FISCO BCOS EN Documentation
Release v2.5.0

fisco-dev

Jun 19, 2020

Contents

1 Introduction 3
2 Compatibility 9
3 Installation 21
4 Tutorials 29
5 Manual (Revision in progress) 47
6 Enterprise deployment tool 209
7 Web3SDK 251
8 Blockchain browser 271
9 JSON-RPC API 279
10 FAQ (Revision in progress) 311

11 Community 315

FISCO BCOS EN Documentation, Release v2.5.0

FISCO BCOS is a reliable, secure, efficient and portable blockchain platform with proven success from many
partners and successful financial-grade applications.

Github homepage
Insightful articles
Code contribution
Feedback
Application cases
WeChat group

WeChat official account

Overview

To fast build a blockchain system based on FISCO BCOS 2.0+, please read Installation

To deploy multi-group blockchain and the first blockchain application based on FISCO BCOS 2.0+, please
read Quick Guide

To know more about functions of FISCO BCOS 2.0+, please read Config files and items, Node access,
Parallel transactions, Distributed storage, OSCCA computing in Operation Tutorial

Console: Interactive command tool to visit blockchain nodes and check status, deploy or call contract,
etc.

Deployment tool(Generator): to support operations like building blockchain, expansion, etc., recom-
mended for business level applications. You can learn the operation methods in Quick Guide

SDK: offer APIs for node status, blockchain system configuration modification and nodes to send transac-
tions.

The detailed introduction of browser is in Browser
JSON-RPC interface is introduced in JSON-RPC API

System design documentation: System design

Key features

Multi-group: Quick Guide Operation Tutorial Design Documentation
Parallel computing: Operation Tutorial Design documentation

Distributed storage: Operation Tutorial Design documentation

Important:

This technical documentation is only adaptable for FISCO BCOS 2.0+. For FISCO BCOS 1.3.x users,
please check Ver.1.3 Documentation

FISCO BCOS 2.0+ and its adaptability are illustrated here

Contents 1

https://github.com/FISCO-BCOS/FISCO-BCOS
http://mp.weixin.qq.com/mp/homepage?__biz=MzA3MTI5Njg4Mw==&hid=2&sn=4f6d7251fbc4a73ed600e1d6fd61efc1&scene=18#wechat_redirect
https://mp.weixin.qq.com/s/_w_auH8X4SQQWO3lhfNrbQ
https://github.com/FISCO-BCOS/FISCO-BCOS/issues
https://mp.weixin.qq.com/s/cUjuWf1eGMbG3AFq60CBUA
https://github.com/FISCO-BCOS/FISCO-BCOS-DOC/blob/release-2/images/community/WeChatQR%2Ejpg
https://github.com/FISCO-BCOS/FISCO-BCOS-DOC/blob/release-2/images/community/OfficialAccountsQR%2Ejpg
./docs/installation.html
./docs/tutorial/index.html
./docs/manual/configuration.html
./docs/manual/node_management.html
./docs/manual/transaction_parallel.html
./docs/manual/distributed_storage.html
./docs/manual/guomi_crypto.html
./docs/manual/index.html
./docs/manual/console.html
./docs/enterprise_tools/index.html
./docs/enterprise_tools/tutorial_one_click.html
./docs/sdk/index.html
./docs/browser/browser.html
./docs/api.html
./docs/design/index.html
./docs/manual/group_use_cases.html
./docs/manual/configuration.html
./docs/design/architecture/group.html
./docs/manual/transaction_parallel.html
./docs/design/parallel/dag.html
./docs/manual/distributed_storage.html
./docs/design/storage/index.html
http://fisco-bcos-documentation.readthedocs.io/zh_CN/release-1.3/
./docs/change_log/index.html

FISCO BCOS EN Documentation, Release v2.5.0

2 Contents

cHAPTER 1

Introduction

FISCO BCOS is the first safe and controllable enterprise-level financial consortium blockchain platform open
source by domestic enterprises. It is jointly created by the FISCO open source working group and officially
launched in December 2017.

The community links multiple parties with open source. At present, more than 500 enterprises and institutions and
more than 10,000 community members have joined to build and co-governance, and developed into the largest
and most active domestic consortium blockchain platform ecosystem. The underlying platform is highly available
and easy to use after extensive application and practice. Hundreds of application projects are developed based on
the FISCO BCOS underlying platform, and over 60 have been steadily operating in the production environment,
covering cultural copyright, judicial services, government services, Internet of Things, finance, smart communities
and other fields.

Note: FISCO BCOS takes the actual needs of the consortium blockchain as a starting point, taking into account
performance, security, maintainability, ease of use, and scalability, and supports multiple SDK, and provides
visual middleware tools, greatly reducing the time to build chains, develop and deploy applications. In addition,
FISCO BCOS passed the two evaluations of the Trusted Blockchain evaluation function and performance of the
Information Communication Institute, and the single-chain TPS can reach 20,000.

1.1 Architecture

In 2.0, FISCO BCOS innovatively proposed a “one-body, two-wing, multi-engine” architecture to achieve hor-
izontal expansion of system throughput and greatly improve performance. It has industry in terms of security,
operation and maintenance, ease of use, and scalability, and leading edge.

FISCO BCOS EN Documentation, Release v2.5.0

MEE ALY T AIRS
| =on |

The ‘One-body’ refers to the group structure, supports the rapid formation of consortium blockchain, and allows
companies to build chains as easily as chat groups. According to business scenarios and business relationships,
enterprises can choose different groups to form data sharing and consensus of multiple different ledgers, thereby
quickly enriching business scenarios, expanding business scale, and greatly simplifying the deployment and oper-
ation and maintenance costs of the chain.

The ‘two wings’ refer to supporting parallel computing models and distributed storage, both of which bring better
scalability to the group architecture. The former changes the method of serial execution in the order of transactions
in the block, and executes transactions in parallel based on DAG (directed acyclic graph), which greatly improves
performance. The latter supports enterprises (nodes) to store data in remote distributed systems, overcoming many
limitations of localized data storage.

‘Multi-engine’ is a summary of a series of functional features. For example, pre-compiled contracts can break
through the performance bottleneck of EVM and achieve high-performance contracts; the console allows users to
quickly master blockchain usage skills.

The above features all focus on solving the pain points of technology and experience, provide more tool support
for development, operation and maintenance, governance and supervision, make the system process faster and

4 Chapter 1. Introduction

FISCO BCOS EN Documentation, Release v2.5.0

have higher capacity, and make the application operating environment safer and more stable.

1.2 Core module

FISCO BCOS adopts high-throughput scalable multi-group architecture, which can dynamically manage multiple
chains and groups to meet the expansion and isolation requirements of multiple business scenarios. Modules
include:

¢ Consensus mechanism: Pluggable consensus mechanism, supporting PBFT, Raft and rPBFT consensus
algorithms, low transaction confirmation delay, high throughput, and ultimate consistency. Among them,
PBFT and rPBFT can solve Byzantine problems and have higher security.

» Storage: The storage of the world state is changed from the original MPT storage structure to distributed
storage, avoids the problem of performance degradation caused by the rapid expansion of the world state.
Introduces a pluggable storage engine, supports LevelDB, RocksDB, MySQL and other back-end storage,
supports data expansion quickly and easily, and isolates calculation from data, reducing the impact of node
failure on node data.

» Network: Support network compression, and implement a good distributed network distribution mechanism
based on the idea of load balancing to minimize bandwidth overhead.

1.3 Performance

In order to improve system performance, FISCO BCOS optimizes transaction execution in terms of improving
transaction execution efficiency and concurrency, so that transaction processing performance can reach more than
10,000 levels.

e Precompiled contract based on C++: The Precompiled contract written in C++ language is built into the
blockchain platform, and the execution efficiency is higher.

* Transaction execution in parallel: Based on the DAG algorithm to build a transaction execution flow
within a block based on the mutually exclusive relationship between transactions, maximizing parallel exe-
cution of transactions within a block.

1.4 Safety

Considering the high security requirements of the consortium blockchain platform, in addition to the TLS security
protocol used for communication between nodes and between nodes and clients, FISCO BCOS also implements
a complete set of security solutions:

Network access mechanism: Restrict nodes from joining and exiting the alliance chain, and delete the
malicious nodes of the specified group from the group, ensuring system security.

Black and white list mechanism: Each group can only receive messages from the corresponding group
to ensure the isolation of network communication between the groups; the CA blacklist mechanism can
disconnect the network connection from the malicious node in time, ensuring the security of the system.

Authority management mechanism: Based on distributed storage permission control mechanism, flexible
and fine-grained control of permissions for external account deployment contracts and creation, insertion,
deletion and update of user tables.

Support OSCCA-approved algorithm: Support OSCCA-approved encryption, signature algorithm and
OSCCA-approved SSL communication protocol.

Disk encryption algorithm: Support the disk encryption algorithm to ensure the confidentiality of the data
on the chain.

Key management scheme: Based on the disk encryption algorithm, the KeyManager service is used to
manage the node key, which is more secure.

1.2. Core module 5

FISCO BCOS EN Documentation, Release v2.5.0

* Homomorphic encryption ~ Group/Ring signature: Homomorphic encryption and group ring signature
interfaces are provided on the chain to meet more business needs.

1.5 Operability

In the consortium blockchain platform, the operation and maintenance of the blockchain is crucial. FISCO BCOS
provides a complete set of operation and maintenance deployment tools, and introduces contract naming ser-
vice, data archiving and migration, contract lifecycle management to improve Operation and Management
efficiency.

* Operation and Management deployment tool: Convenient tool for deploying, managing and monitor-
ing multi-institution multi-group consortium blockchain, supporting multiple operations such as expanding
nodes and expanding new groups.

e Contract naming service: Establish a mapping relationship between the contract address to the contract
name and the contract version, so that the caller can easily call the contract on the chain by remembering
the simple contract name.

¢ Data archiving, migration and export functions: Provide data export components, support on-chain data
archiving, migration and export, increase the maintainability of on-chain data, and reduce the complexity of
operation.

* Contract lifecycle management: Provide contract life cycle management function on the chain, which is
convenient for the chain administrator to manage the contract on the chain.

1.6 Ease of use

FISCO BCOS introduces tools such as development and deployment tools, interactive console, blockchain
browsers, etc. to improve the ease of use of the system and greatly reduce the time to build chains and deploy
applications.

* Development and deployment tools
¢ Interactive command line tool console
¢ Blockchain browser

In order to facilitate the rapid development of applications for developers of different languages, FISCO BCOS
also supports Java SDK ~ Node.js SDK ~ Python SDK and Go SDK

1.7 Community development tools

Relying on the huge open source ecosystem, all partners in the community uphold the co-construction concept
of “from developers, for developers”, On the bottom platform of FISCO BCOS, independently develop multiple
development tools at hand and give back to the community to reduce the difficulty and cost of blockchain applica-
tion development from different business levels. The following is a partial list, and more institutions or developers
are welcome to feedback more useful tools to the community.

e Blockchain middleware platform WeBASE: For a variety of roles, such as developers and operators, and
according to different scenarios, including development, debugging, deployment, audit, etc., to create a
wealth of functional components and practical tools, providing a friendly and visual operating environment.

¢ Distributed identity solution Weldentity: A distributed multi-center technology solution based on
blockchain, providing a series of basic layer and application interfaces such as distributed entity identity
identification and management, trusted data exchange protocol, etc., which can realize the data of entity
objects (people or things) Security authorization and exchange.

6 Chapter 1. Introduction

https://github.com/FISCO-BCOS/go-sdk
https://github.com/WeBankFinTech/WeBASE
https://github.com/webankfintech/weidentity

FISCO BCOS EN Documentation, Release v2.5.0

* Distributed event-driven architecture WeEvent: Implemented a credible, reliable, and efficient cross-
institutional and cross-platform event notification mechanism. Without changing the development language
and access protocol of existing commercial systems, realize cross-institution and cross-platform event noti-
fication and processing.

¢ Cross-chain collaboration solution WeCross: Support cross-chain transaction transactions, meet the
atomicity of cross-chain transactions, manage cross-chain transactions, support multi-party collaborative
management, and avoid single-point risks.

* Scene-style privacy protection solution WeDPR: For hidden payment, anonymous voting, anonymous
bidding and selective disclosure and other application solutions, provide an immediately available scenario-
based privacy protection and efficient solutions to help various industries to explore data-related businesses
legally and compliantly.

e ChainlIDE: Provide smart contract cloud development tools to help developers save marginal costs and
accelerate the launch of blockchain applications.

1.7. Community development tools 7

https://github.com/webankfintech/weevent
https://github.com/WeBankFinTech/WeCross
https://fintech.webank.com/wedpr
https://fiscoide.com/

FISCO BCOS EN Documentation, Release v2.5.0

8 Chapter 1. Introduction

CHAPTER 2

Compatibility

FISCO BCOS 2.5.0
Change description, compatibility and upgrade instructions

* FISCO BCOS v2.5.0

FISCO BCOS 2.4.0
Change description, compatibility and upgrade instructions

* FISCO BCOS v2.4.0

FISCO BCOS 2.3.0
Change description, compatibility and upgrade instructions

* FISCO BCOS v2.3.0

FISCO BCOS 2.2.0
Change description, compatibility and upgrade instructions

* FISCO BCOS v2.2.0

FISCO BCOS 2.1.0
Change description, compatibility and upgrade instructions

e FISCO BCOS v2.1.0

FISCO BCOS 2.0.0

Change description, compatibility and upgrade instructions

./2_5_0.html
./2_4_0.html
./2_3_0.html
./2_2_0.html
./2_1_0.html

FISCO BCOS EN Documentation, Release v2.5.0

FISCO BCOS v2.0.0

FISCO BCOS 2.0.0-rc3

New features

Change description, compatibility and upgrade instructions

Distributed storage (Operation Manual)

¢ ‘CRUD SDK interface<../sdk/sdk.html#crudservice>‘_ (Operation Manual)

FISCO BCOS v2.0.0-rc3

FISCO BCOS 2.0.0-rc2

New features

Change description, compatibility and upgrade instructions

 Parallel computing model (Operation Manual) (Operation Tutorial)

Distributed storage (Operation Manual)

FISCO BCOS v2.0.0-rc2

FISCO BCOS 2.0.0-rc1

New features

Change description, compatibility and upgrade instructions

* Group architecture (Operation Tutorial) (Design Document)

Console (Installation) (Operation Manual)
Virtual machine

Compile contract (Operation Manual)

CRUD interface contract (Operation Tutorial)
Key management service (Operation Manual)

Admission control (Operation Manual)

FISCO BCOS v2.0.0-rcl

FISCO BCOS 1.x Releases
FISCO BCOS 1.3 version:

FISCO BCOS 1.3.8 Release
FISCO BCOS 1.3.7 Release
FISCO BCOS 1.3.6 Release
FISCO BCOS 1.3.5 Release
FISCO BCOS 1.3.4 Release
FISCO BCOS 1.3.3 Release
FISCO BCOS 1.3.2 Release
FISCO BCOS 1.3.1 Release

10

Chapter 2. Compatibility

./2_0_0.html
../what_is_new.html#id3
../manual/distributed_storage.html
../manual/console.html#create-sql
./2_0_0_rc3.html
../what_is_new.html#id4
../manual/transaction_parallel.html
../manual/group_use_cases.html
../what_is_new.html#id3
../manual/distributed_storage.html
./2_0_0_rc2.html
../what_is_new.html#id2
../manual/group_use_cases.html
../design/architecture/group.html
../what_is_new.html#id6
../installation.html#id7
../manual/console.html
../what_is_new.html#id7
../what_is_new.html#id5
../manual/smart_contract.html
../what_is_new.html#crud
../tutorial/sdk_application.html
../what_is_new.html#id8
../manual/storage_security.html
../what_is_new.html#id9
../manual/node_management.html
./2_0_0_rc1.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.8
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.7
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.6
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.5
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.4
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.3
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.2
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.1

FISCO BCOS EN Documentation, Release v2.5.0

e FISCO BCOS 1.3.0 Release

FISCO BCOS 1.2 version:

¢ FISCO BCOS 1.2.0 Release

FISCO BCOS 1.1 version:

* FISCO BCOS 1.1.0 Release

FISCO BCOS 1.0 version:

e FISCO BCOS 1.0.0 Release

FISCO BCOS preview version:

e FISCO BCOS 1.5.0 pre-release

View node and data versions

View node binary version:. /fisco-bcos —-version

Data format and version of communication protocol: to get it via ‘supported_version’ configuration item in
the configuration file config.ini

2.1

v2.5.0

v2.4.x upgraded to v2.5.0

Compatible upgrade : Directly replace the binary of the v2.4.x node with the v2.5.0 binary , the upgraded
version fixes bugs in v2.4.x.

Full upgrade : Refer to Installation to build a new chain and resubmit all historical transactions to the new
node. The upgraded node includes new features in v2.5.0

v2.4.0 Release Note

2.1.1 Change description

Added

Add precompiled contract, address 0x5, implement modular exponential calculation.
Add precompiled contract, address 0x6, implement point addition (ADD) of elliptic curve alt_bn128.

Add precompiled contract, address 0x7, implement the scalar multiplication (MUL) of elliptic curve
alt_bn128.

Add precompiled contract, address 0x8, implement a pairing function on a specific pairing-friendly elliptic
curve for zZkSNARK verification.

Add precompiled contract, address 0x9, implement blake2 hash function.
Add flow control to achieve configurable node output bandwidth and maximum QPS

Add ChainGovernance precompiled contract, address 0x1008, to implement role-based authority manage-
ment

Add SDK connection node supports OSCCA-approved SSL, can be configured whether to enable

Add account management to freeze and unfreeze accounts

Changed

2.1. v2.5.0 11

https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.0
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.2.0
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.1.0
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.0.0
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.5.0-pre-release
../manual/configuration.html#id7
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.5.0/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.5.0
../manual/configuration.html#id10

FISCO BCOS EN Documentation, Release v2.5.0

* In MySQL storage mode, the field type of the contract table is changed to mediumblob.
* The OSCCA-approved cryptography is modified from the compile option to the configuration item.

* Change the node to only accept the SDK connection of the same institution, can be configured whether to
enable

* Paillier homomorphic encryption and group signature are enabled by default.
» The build_chain script uses the private key as the root certificate and institution certificate of secp256k1.
* The storage of PBFTBackup was changed from LevelDB to RocksDB.

* Refactor the libdevcrypto module, optimize the code structure, and use TASSL to implement OSCCA-
approved SSL and non-national TLS connections.

* Optimize lock implementation of storage module openTable.

» Optimize block data encoding to parallel.

* Optimize the large object destructor to asynchronous.

* Optimize log output mechanism to reduce the impact of log output on performance.

* Optimize the number of threads of MHD and transaction pool modules to reduce memory usage.

* Optimize MySQL storage adapter implementation, optimized ZdbStorage code implementation.

* Fix an issue where the Entry was modified in the same block, and subsequent transactions query the Entry
result error.

* Fix the issue that transactions in non-leader node transaction pool cannot be packaged under Raft consensus.
* Fix a deadlock issue with CachedStorage.
* Fix the problem of recovering from Binlog when Binlog is turned on in some extreme cases.

» Fix an issue that Viewchange was rejected after a node restart under certain circumstances the view could
not be restored quickly.

Compatibility
The old version can directly replace the program upgrade
Compatibility mode rollback to v2.4.x method

After a node is upgraded from v2.4.x to v2.5.0 in compatibility mode, the rollback can be completed directly by
replacing the node binary back to v2.4.x.

2.2 v2.4.0

v2.3.x upgraded to v2.4.0

* Compatible upgrade : Directly replace the binary of the v2.3.x node with the v2.4.0 binary , the upgraded
version fixes bugs in v2.3.x, and includes 2.4.0 dynamic group life cycle management function, network
statistics function, but will not enable all the features of 2.4.0, in normal scenarios, you can roll back to
v2.3.x. For the rollback method, refer to the last section of this article.

* Full upgrade : Refer to Installation to build a new chain and resubmit all historical transactions to the new
node. The upgraded node includes new features in v2.4.0

¢ v2.4.0 Release Note

12 Chapter 2. Compatibility

../manual/configuration.html#id10
../manual/configuration.html#p2p
../manual/configuration.html#p2p
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.4.0/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.4.0

FISCO BCOS EN Documentation, Release v2.5.0

2.2.1 Change description

New features

e Support dynamic group life cycle management: Related RPC interfaces include generate-
Group ~ startGroup ~ stopGroup ~ removeGroup ~ recoverGroup ~ queryGroupStatus

* Support network traffic and Gas statistics

* Precompiled contract supports Gas

* Support EVM Gas measurement standard plug-in configuration

* Add new interface sendRawTransactionAndGetProof push transaction and transaction receipt proof
Update

e The minimum requirement of CMake is modified to 3.7, supporting multi-source download of dependent
libraries

Fix
* Fix the problem that the ecRecover interface is not available in the OSCCA-approved cryptography mode

¢ Fix the inconsistent return value of sha256 interface in OSCCA-approved cryptography mode and non-
OSCCA-approved cryptography mode

compatibility

Forward compatible, The old version can directly replace the program upgrade, the replaced node fixes the bug
in v2.3.x, and includes 2.4.0 dynamic group life cycle management function and network statistics function, to
enable all new features in v2.4.0, you need to rebuild the blockchain.

Compatibility mode rollback to v2.2.x method

After a node is upgraded from v2.3.x to v2.4.0 in compatibility mode, the rollback can be completed directly by
replacing the node binary back to v2.3.x.

2.3 v2.3.0

v2.2.x upgraded to v2.3.0

e Compatible upgrade : Directly replace the binary of the v2.2.x node with the v2.3.0 binary , the upgraded
version fixes bugs in v2.2.x, but will not enable the new features of v2.3.0, in normal scenarios, you can roll
back to v2.2.x. For the rollback method, refer to the last section of this article.

¢ Full upgrade : Refer to Installation to build a new chain and resubmit all historical transactions to the new
node. The upgraded node includes new features in v2.3.0

¢ v2.3.0 Release Note

2.3.1 Change description

New features

e Paillier encryption: Paillier encryption is supported on the chain. To enable this function, please refer to
here

* Group Signature: v2.3.0 supports group signature verification and ring signature verification, provides group
signature server and group signature client demo to realize the group signature generation, on-chain and on-
chain verification.

2.3. v2.3.0 13

../api.html#generategroup
../api.html#generategroup
../api.html#startgroup
../api.html#stopgroup
../api.html#removegroup
../api.html#recovergroup
../api.html#querygroupstatus
../design/virtual_machine/gas.html#precompiled-contract-supports-gas-calculation
../design/virtual_machine/gas.html#evm-gas-measurement-standard-plug-in
../api.html#sendrawtransactionandgetproof
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.3.0/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.3.0
../manual/privacy.html#homomorphic-encryption
../manual/privacy.html#how-to-start
../manual/privacy.html#group-ring-signature
https://github.com/FISCO-BCOS/group-signature-server
https://github.com/FISCO-BCOS/group-signature-server
https://github.com/FISCO-BCOS/group-signature-client

FISCO BCOS EN Documentation, Release v2.5.0

* rPBFT: Based on the PBFT consensus algorithm, a new consensus algorithm rPBFT is implemented to
minimize the impact of node size on the consensus algorithm, To configure rPBFT, please refer to Consensus
Configuration and rPBFT Consensus Configuration

e KVTable: Provides key-based data reading and writing methods. Compared to Table contract CRUD in-
terface, it is simpler and easier to use and maintain.

» Contract management: Provide contract life cycle management interface, including freeze, unfreeze, Con-
tract Status Query and its related Authorization, Permission Query and other operations to facilitate the
operation and maintenance personnel’s management of the on-chain contract

Update
e rpc.listen_ip split into channel_listen_ip and jsonrpc_listen_ip

* Provide contract write permission control interface, including contract write permission authoriza-
tion ~ revokeFlquery

» Simplify parallel transaction configuration

» recommended to use MySQL directly connected storage mode instead of External storage mode
Fix

 Fix memory issues in specific compatibility scenarios
compatibility

Forward compatible, The old version can directly replace the program upgrade, but cannot launch the new
features of this version. If you want to use the new features of this version, you need to relink.

Compatibility mode rollback to v2.2.x method

After a node is upgraded from v2.2.x to v2.3.0 in compatibility mode, the rollback can be completed directly by
replacing the node binary back to v2.2.x.

2.4 v2.2.0

v2.1.x upgrades to v2.2.0

* Compatible upgrade : Directly replace the binary of the v2.1.x node with v2.2.0 binary. The upgraded
version fixes bugs in v2.1.x but does not enable the new features in v2.2.0. In most cases, it is ok to rollback
to v2.1.x after upgrading to v2.2.0. See the last section for more information.

* Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node.
The upgraded node contains the new features in v2.2.0.

¢ v2.2.0 Release Note

2.4.1 Change description

New Features
* Constructing Merkel tree of transactions and receipts, which provides an spv-based method of proof
¢ Plug-in caching mechanism and provide caching switches

Update

Optimize the process, storage and protocol to improve performance.
1. process

* Commit RPC transactions to the transaction pool asynchronously

14 Chapter 2. Compatibility

../manual/configuration.html#consensus-configuration
../manual/configuration.html#consensus-configuration
../manual/configuration.html#rpbft-consensus-configurations
../manual/smart_contract.html#use-kvtable-contract-get-set-interface
../manual/smart_contract.html#to-use-table-contract-crud-interface
../manual/smart_contract.html#to-use-table-contract-crud-interface
../manual/console.html#freezecontract
../manual/console.html#unfreezecontract
../manual/console.html#getcontractstatus
../manual/console.html#getcontractstatus
../manual/console.html#grantcontractstatusmanager
../manual/console.html#listcontractstatusmanager
../manual/configuration.html#configure-rpc
../manual/console.html#grantcontractwritepermission
../manual/console.html#grantcontractwritepermission
../manual/console.html#revokecontractwritepermission
../manual/console.html#listcontractwritepermission
../manual/configuration.html#parallel-transaction-configuration
../manual/configuration.html#configure-storage
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.2.0/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.2.0
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/merkle_proof.html

FISCO BCOS EN Documentation, Release v2.5.0

Fix

Parallelize the processing of transactions in the transaction pool
Optimize the caching strategy
Optimize lock granularity during parallel transaction execution

Optimize access to some objects to reduce copy costs

. Storage

Limit the table name length from 64 to 50
Block data and nonce data are encoded and written to storage in binary

Remove the sorting and hashing of partial tables when the data is submitted

. Agreement

Optimize the strategy of forwarding blocks
Optimize the strategy of forwarding PBFT messages
Optimize the structure of PBFT message

Optimize the strategy of broadcasting transactions

Optimize the strategy of forwarding transactions

* Fix caching bugs in specific compatibility scenarios

Compatibility

2.1.0 is forward compatible. Old versions can upgrade to this new version by directly replacing the binaries for
bug fixing purpose. But the new features of this version cannot be enabled unless you deploy a new chain with
only new binaries from scratch.

Rollback to v2.1.x after compatible upgrading

After compatible upgrading to v2.2.0, we can rollback by simply replacing £isco-bcos binary file to v2.1.x.

2.5 v2.1.0

v2.0.x upgrades to v2.1.0

¢ Compatible upgrade : Directly replace the binary of the v2.0.x node with v2.1.0 binary. The upgraded

version fixes bugs in v2.0.x but does not enable the new features in v2.1.0. In most cases, it is ok to rollback

to v2.0.x after upgrading to v2.1.0. See the last section for more information.

The upgraded node contains the new features in v2.1.0.

¢ v2.1.0 Release Note

¢ Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node.

2.5.1 Change description

New Features

* CA whitelist
e AMOP authentication
* Event log pushing

* Start new groups without restarting the node

2.5. v2.1.0

15

https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/sync/sync_block_optimize.html#id1
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/consensus/pbft_optimize.html#id1
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/consensus/pbft_optimize.html#prepare
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/sync/sync_trans_optimize.html#id2
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/sync/sync_trans_optimize.html#id3
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.1.0/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.1.0
../sdk/java_sdk.html#id14
../enterprise_tools/tutorial_one_click.html#id22

FISCO BCOS EN Documentation, Release v2.5.0

Update
 Support Channel Message v2 protocol
* Support to configure node address with domain names
¢ Increase max contract binary size limit to 256KB
* QOutput more detailed log for transaction exceptions
* Rename SDK certificate file names generated by build_chain.sh to sdk.crt and sdk.key
¢ Adjust some code structure for better performance
* Decrease memory footprint
Fix
* Minor channel connection bugs
Compatibility

2.1.0 is forward compatible. Old versions can upgrade to this new version by directly replacing the binaries for
bug fixing purpose. But the new features of this version cannot be enabled unless you deploy a new chain with
only new binaries from scratch.

Rollback to v2.0.x after compatible upgrading

After compatible upgrading to v2.1.0, we can rollback by simply replacing fisco-bcos binary file to v2.0.x.
If a large contract(binary size between 24K and 256K) is deployed after upgrading, rollback to v2.0.x may lead
to block downloading error. In this case, we need to use v2.1.0 fisco-bcos to download blocks until newest
block before rolling back.

2.6 v2.0.0

v2.0.0-rc3 upgrades to v2.0.0

* Compatible upgrade : Directly replace the binary of the v2.0.0-rc3 node with v2.0.0 binary. The upgraded
version fixes bugs in v2.0.0-rc3 but does not enable the new features in v2.0.0. after upgrading to v2.0.0,
cannot roll back to v2.0.0-rc3

¢ Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node.
The upgraded node contains the new features in v2.0.0.

¢ v2.0.0 Release Note

2.6.1 Change description

New features

¢ AMOP Protocol supports Multicast

* AMOP protocol supports binary transmission

« Statistics of New Historic Failure Transactions in JSON-RPC ‘getTotal Transaction Count’Interface
Update

* RocksDB Mode supports storage security

» Use TCMalloc to optimize memory usage
Fix

* Fix the problem that the P2P module occasionally does not process messages

16 Chapter 2. Compatibility

../design/protocol_description.html#channelmessage-v2
../manual/configuration.html#p2p
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0

FISCO BCOS EN Documentation, Release v2.5.0

* Fix unassigned fields in MySQL or External mode, query failed
* Fix synchronization errors in some extreme scenarios
Compatibility

2.0.0 is forward compatible. Old versions can directly replace program upgrades, but new features of this version
cannot be started. If you need to use the new features of this version, you need to build a new chain.

2.7 v2.0.0-rc3

v2.0.0-rc2 upgrades to v2.0.0-rc3

* Compatible upgrade : Directly replace the binary of the v2.0.0-rc2 node with rc3 binary. The upgraded
version fixes bugs in v2.0.0-rc2 but does not enable the new features in v2.0.0-rc3. after upgrading to
v2.0.0-rc3, cannot roll back to v2.0.0-rc2

* Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node.
The upgraded node contains the new features in v2.0.0-rc3.

¢ v2.0.0-rc3 Release Note

2.7.1 Change description

New features

* Distributed storage: [The new support for underlying connecting to MySQL directly through database con-
nection pool] (../manual/distributed_storage.html#id2)

* Distributed storage: [The new support for RocksDB engine, which to be used for storage by default when
building new chain] (../manual/configuration.html#id14)

* Distributed storage: The new support for CRUD interface. The console in 1.0.3 version or above provides
class SQL statements to read and write blockchain data

Updates
» complete the ABI decoding module
» modify the error codes in precompiled contract and RPC interface and unify them to negative number
* optimize the storage module; increase the cache layer and support to configure cache size

* optimize the storage module; allow to submit block in pipelining. You can configure [storage]
max_capacity to control the memory size that is allowed

» move the distributed storage configuration item [storage] from the group genesis file to the group ini
configuration file

¢ the default storage is upgraded to RocksDB and still supports the old version of LevelDB

* adjust the splicing logic of transaction mutex variables to improve the degree of parallelism of the transac-
tions between different contracts

Fix

* fix the abnormal termination that may occur when CRUD interface contract opens parallel

2.7.2 Compatibility note

RC3 Forward Compatibility. The older versions can directly upgrade by replacing program, but they cannot
launch the new features for this release. If you need to use the new features, you need to build chain again.

2.7. v2.0.0-rc3 17

https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc3/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc3
../manual/console.html#create-sql
../manual/console.html#create-sql

FISCO BCOS EN Documentation, Release v2.5.0

2.8 v2.0.0-rc2

v2.0.0-rcl upgrade to v2.0.0-rc2

Compatible upgrade : Directly replace the binary of the v2.0.0-rcl node with rc2 binary <https://github.
com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc2/fisco-bcos.tar.gz>_ . The upgraded ver-
sion fixes bugs in v2.0.0-rc1 but does not enable the new features such as parallel computing, distributed
storage, etc. in v2.0.0-rc2. after upgrading to v2.0.0-rc2, cannot roll back to v2.0.0-rcl

Full upgrade : Refer to Install <../installation.html>‘_ to build new chain and resubmit all historical trans-
actions to the new node. The upgraded node contains the new features in v2.0.0-rc2.

v2.0.0-rc2 Release Note

2.8.1 Change description

New features

Parallel computing model: Parallel contract development framework, Parallel Transaction Executor (PTE)

Distributed storage: amdb-proxy, SQLStorage

Optimization

optimize the logic of block packing transaction number, and dynamically adjust the number of block packing
transactions according to the execution time.

optimize the process of block synchronization to make block synchronization faster

optimize the codec of the upcoming transaction, the verification of the transaction and the coding of disk in
parallel

optimize the logic of transaction executing return code to make return code more accurate

upgrade storage modules to support concurrent reading and writing

Other features

add network data packet compression

add compatibility configuration

add chainID and group ID to the transaction code
add binary cache in transaction

add timestamp information in gensis block

add some precompile demos

support using Docker to build chain

delete unnecessary logs

delete unnecessary and repeat operations

Bug fix

the bug of program exiting caused by asInt abnormity when processing parameters in RPC

the bug in which the transaction has not been processed in pool when the transaction executing ‘Out of gas’
the bug that can be replayed with the same transaction binary between different groups

the problems of performance degradation caused by ‘insert’ operation

some stability problems have been fixed

18

Chapter 2. Compatibility

https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc2/fisco-bcos.tar.gz
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc2/fisco-bcos.tar.gz
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc2
../manual/configuration.html#id15
../manual/configuration.html#id7%3E

FISCO BCOS EN Documentation, Release v2.5.0

2.8.2 Compatibility note

2.9 v2.0.0-rct1

v1.x upgrades to v2.0.0-rcl

¢ v2.0.0-rc2 is not compatible with vl.x so v2.0.0-rc1 cannot directly parse the historical block data

generated by v1.x, but the old data can be recovered by performing historical transaction on the new chain
at v2.0.0-rcl

¢ build 2.0’s new chain : Refer to install

¢ v2.0.0-rcl Release Note

2.9.1 Change description

Architecture

1.

Add group architecture: each group has independent consensus and storage. System throughput can be
lateral spreading based on lower operation cost.

Add distributed data storage: supports nodes storing data in remote distributed systems to achieve computing
and data isolation, high-speed capacity expansion, and data security level enhancement.

. Add support for precompiled contracts: the underlying implements pre-compiled contract framework based

on C++, is compatible with the solidity calling method, and improves the performance of smart contract
execution.

Introducing evme extension framework: support for extending different virtual machine engines.

Upgrade remodeling P2P, consensus, sync, Transaction execution, transaction pool, block management
module.

Protocol

1.

3.
4.

Implement a set of CRUD basic data access interface specification contract. To compile business contracts
based on CRUD interface to implement traditional SQL oriented business development process.

Support mechanisms such as transaction asynchronous notification, block putting on chain asynchronous
notification, and custom AMOP message notification.

Upgrade Ethereum virtual machine version and support Solidity 0.5.2 version.

Upgrade RPC module.

Security

1.

3.

UpgradeDisk encryption and provide private key management service. When the disk encryption function
is enabled, to manage paivate key depands on KeyManager service.

UpgradeAdmission mechanism. Through introducing the network access mechanism and the group access
mechanism, to control the access of chain and data in different dimensions.

UpgradeAuthority control system. Design access permission based on table

Others

1.
2.

Provide an entry-level building chain tool.

Provide modular unit testing and end-to-end integration testing and support automated continuous integra-
tion and continuous deployment.

2.9. v2.0.0-rct 19

https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc1/fisco-bcos.tar.gz
../installation.html
https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc1

FISCO BCOS EN Documentation, Release v2.5.0

2.9.2 Compatibility note

Compatible version

20 Chapter 2. Compatibility

CHAPTER 3

Installation

This chapter will introduce the required installations and configurations of FISCO BCOS. For better understand-
ing, we will illustrate an example of deploying a 4-node consortium chain in a local machine using FISCO BCOS.
Please use the supported hardware and platform operations according to here.

3.1 To build a single-group consortium chain

This section takes the construction of single group FISCO BCOS chain as an example to operate. We use the
build_chain. sh script to build a 4-node FISCO BCOS chain locally in Ubuntu 16.04 64bit system.

Note:
* To update an existing chain, please refer to compatibility chapter.
e It is similar to build a multi-group chain, interested can be referred to here .

* This section uses pre-compiled static fisco-bcos binaries which tested on CentOS 7 and Ubuntu 16.04 64bit.

3.1.1 Prepare environment

¢ Install dependence

build_chain. sh script depends on openssl, curl and is installed by using the following instructions.
For CentOS system, to replaces apt with yum in the following command. For macOS system, to executes brew
install openssl curl.

sudo apt install -y openssl curl

* Create operation directory

cd ~ && mkdir -p fisco && cd fisco

e Download build_chain. sh script

curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.5.0/build_
—chain.sh && chmod u+x build_chain.sh

21

change_log/index.html
manual/group_use_cases.html

FISCO BCOS EN Documentation, Release v2.5.0

Note:

e If the build_chain.sh script cannot be downloaded for a long time due to network problems, try

curl -LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/blob/master/tools/build_chain.sh && chmod u+x
build_chain.sh

3.1.2 Build a single-group 4-node consortium chain

Execute the following command in the fisco directory to generate a single group 4-node FISCO chain. It is

necessary to ensure that the 30300~30303, 20200~20203, 8545~8548 ports of the machine are not
occupied.

bash build_chain.sh -1 "127.0.0.1:4" -p 30300,20200,8545 -v 2.5.0

Note:
» The -p option specifies the starting port, which are p2p_port, channel_port, and jsonrpc_port.

* For security and ease of use consideration, the latest configuration of v2.3.0 version splits listen_ip into

jsonrpc_listen_ip and channel_listen_ip, but still retains the parsing function of listen_ip. For details, please
refer to here

* In order to facilitate development and experience, the reference configuration of channel_listen_ip is 0.0.0.0.
For security reasons, please modify it to a safe listening address according to the actual business network
situation, such as: intranet IP or specific external IP

If the command is executed successfully, A11 completed will be output. If the execution fails, please check
the error message in the nodes/build. log file.

Checking fisco-bcos binary...
Binary check passed.

Generating keys
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1

Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1

[INFO] Execute the download_console.sh script in directory named by IP to get
—~FISCO-BCOS console.

e.g. bash /home/ubuntu/fisco/nodes/127.0.0.1/download_console.sh

[INFO] FISCO-BCOS Path : bin/fisco-bcos

[INFO] Start Port : 30300 20200 8545

[INFO] Server IP : 127.0.0.1:4

[INFO] State Type : storage

[INFO] RPC listen IP : 127.0.0.1

[INFO] Output Dir : /home/ubuntu/fisco/nodes

[INFO] CA Key Path : /home/ubuntu/fisco/nodes/cert/ca.key

[INFO] All completed. Files in /home/ubuntu/fisco/nodes

3.1.3 Start FISCO BCOS chain

* Execute the following command to start all nodes

22 Chapter 3. Installation

manual/configuration.html#configure-rpc

FISCO BCOS EN Documentation, Release v2.5.0

bash nodes/127.0.0.1/start_all.sh

Success will output a response similar to the following, otherwise, please use netstat —-an | grep tcpto
check whether the machine’s 30300~30303, 20200~20203, 8545~8548 ports are occupied.

try to start nodel
try to start nodel
try to start node2
try to start node3

nodel start successfully
node2 start successfully
node0 start successfully
node3 start successfully

3.1.4 Check process

» Execute the following command to check whether the process is started

ps —ef | grep -v grep | grep fisco-bcos

In normal situation, the output will be similar to the following. If the number of processes is not 4, then the reason
why the process does not start is that the port is occupied.

fisco 5453 1 1 17:11 pts/0 00:00:02 /home/ubuntu/fisco/nodes/127.0.0.
—1/node0/../fisco-bcos -c config.ini
fisco 5459 1 1 17:11 pts/0 00:00:02 /home/ubuntu/fisco/nodes/127.0.0.
—1/nodel/../fisco-bcos -c config.ini
fisco 5464 1 1 17:11 pts/0 00:00:02 /home/ubuntu/fisco/nodes/127.0.0.
—1/node2/../fisco-bcos -c config.ini
fisco 5476 1 1 17:11 pts/0 00:00:02 /home/ubuntu/fisco/nodes/127.0.0.

—1/node3/../fisco-bcos -c config.ini

3.1.5 Check log output

 Execute the following command to view the number of nodes that node0 links to

tail -f nodes/127.0.0.1/node0/log/log* | grep connected

In normal situation, the connecting messages will be output continuously. From the output messages, we can see
that node0 has links with the other three nodes.

info|2019-01-21 17:30:58.316769| [P2P] [Service] heartBeat,connected cc
info|2019-01-21 17:31:08.316922| [P2P] [Service] heartBeat, connected

nt=3
info|2019-01-21 17:31:18.317105| [P2P] [Service] heartBeat, connected count=

 Execute the following command to check whether it is in consensus

tail -f nodes/127.0.0.1/node0/log/log* | grep +++

In normal situation, the message will be output ++++Generating seal continuously to indicate that the
consensus is normal.

info|2019-01-21 17:23:32.576197|,

—~[g:1] [p:264] [CONSENSUS] [SEALER] ++++++++++++++++Generating seal on,blkNum=1, tx=0,
—myIdx=2,hash=13dcd2da...

info|2019-01-21 17:23:36.592280],

—~[g:1] [p:264] [CONSENSUS] [SEALER] ++++++++++++++++Generating seal on,blkNum=1, tx=0,
—myIdx=2,hash=31d21lab7...

(continues on next page)

3.1. To build a single-group consortium chain 23

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

info|2019-01-21 17:23:40.612241]
—[g:1] [p:264] [CONSENSUS] [SEALER] ++++++++++++++++Generating seal on,blkNum=1, tx=0,
—myIdx=2,hash=49d0e830...

3.2 Using console

Console links nodes of FISCO BCOS through Web3SDK so as to realize functions like blockchain status query,
call and deploy contracts. The instructions of console are introduced here.

3.2.1 Prepare environment

¢ Install Java

In macOS, execute brew cask install java to install java

sudo apt install -y default-jdk

¢ Get console

cd ~/fisco && «curl -LO https://github.com/FISCO-BCOS/console/releases/download/vl.
—0.9/download_console.sh && bash download_console.sh

Note:

* If the download_console.sh script cannot be downloaded for a long time due to network problems, try cd
~/fisco && curl -LO https://gitee.com/FISCO-BCOS/console/raw/master/tools/download_console.sh

* Copy the console configuration file. If the node does not use the default port, please replace 20200 in the
file with another port.

cp —-n console/conf/applicationContext-sample.xml console/conf/applicationContext.
—xml

» Configure the console certificate

cp nodes/127.0.0.1/sdk/* console/conf/

3.2.2 Start console

¢ Start console

cd ~/fisco/console && bash start.sh

If it outputs following information, then the console has been started successfully, otherwise please check if the
node ports in conf/applicationContext.xml are configured correctly.

Welcome to FISCO BCOS console(1.0.3)!
Type 'help' or 'h' for help. Type 'quit' or 'g' to quit console.

S\ $$5$S

(continues on next page)

24 Chapter 3. Installation

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

| $S__ I 55 1 SS___\$$| S5 \$s| $S | SS9 | SS__/ $s1 $S \$s| 55 | S
=S| $S_\$s
I8\ | $$ \$s A | $$ | $$ | $$ $S1 $S I
=5 \$3 \
| $SSS8 I sS _\$SSsS8\| S5 __ | S5 | S8 | $555S88\) $S __ | 85 | S
=5 _\$55558\
| $$ Zss_ b N s$soss_/ NI oSS/ S8 | SS__/ $$1 85/ NI $S_/ s
e I W
| $$ | 55\ \8$ 55 \$s 55 \8$s $S | $$ 55 \$s 55 \$s $
=5 \8$ $S
\$$ \$55555 \$5555$ \$55558 \$55558 \$55555S \$55558 \$5553
=9 \$55558

3.2.3 Query blockchain status

acquire client ends version information
[group:1]> getNodeVersion
{
"Build Time":"20200619 06:32:10",
"Build Type":"Linux/clang/Release",
"Chain Id":"1",
"FISCO-BCOS Version":"2.5.0",
"Git Branch":"HEAD",
"Git Commit Hash":"72c6d770e5cf0£4197162d0e26005ec03d30fcfe",
"Supported Version":"2.5.0"
}
acquire node connection information
[group:1]> getPeers
[
{

"IPAndPort":"127.0.0.1:49948",

"NodeID":
—"b5872ef£0569903d71330ab7bc85c5a8be03e80b70746ec33cafe27ccdf6£8a71£8c84£d8af9d7912
‘_*"l

"Topic":[]

}I
{

"IPAndPort":"127.0.0.1:49940",

"NodeID":
—"912126291183b673c537153cf190£5512d5355d8edea7864496c257630d01103d8%ae26d17740daeb
‘—’"l

"Topic":[]

}’

"IPAndPort":"127.0.0.1:49932",
"NodeID":
—"db75abl6ed7afa966447c403ca258785323700d9f942ba6fa551dc67ed6822d88dallaleddad9b5lae

"
",

"Topic":[]

b5bal68901fe

d20cbc645c9a

afb8c64e9d20

3.2. Using console 25

FISCO BCOS EN Documentation, Release v2.5.0

3.3 To deploy or call HelloWorld contract

3.3.1 HelloWorld contract

HelloWorld contract offers 2 interfaces which are get () and set () and are used to acquire/set contract variety
name. The contract content is as below:

pragma solidity 70.4.24;

contract HelloWorld {
string name;

function HelloWorld() {

name = "Hello, World!";

function get ()constant returns(string) {
return name;

function set (string n) {
name = n;

3.3.2 Deploy HelloWorld contract

For quick experience, the console comes with HelloWorld contract and is placed under console folder
contracts/solidity/HelloWorld.sol. So, users only have to deploy it using the following command.

input the following instruction in console, if it is deployed successfully, the_
—contract address will be returned

[group:1]> deploy HelloWorld

contract address:0xb3c223fc0bf6646959f254acd4eda7e355b50a344

3.3.3 Call HelloWorld contract

check the current block number
[group:1]> getBlockNumber
1

call get interface to acquire name variety, the contract address here is the_
—returned address of deploy instruction

[group:1]> call HelloWorld Oxb3c223fc0bf6646959f254acd4ed4a77e355b50a344 get
Hello, World!

check the current block number, it remains the same, because get interface will_,
—not change the ledger status

[group:1]> getBlockNumber

1

call set to set name

[group:1]> call HelloWorld O0xb3c223fc0bf6646959f254acd4eda7e355p50a344 set "Hello,
—~FISCO BCOS"

0x21dcal087cb3e44£f44£9p882071ecbecfcb500361cad36a52d39900ea359d0895

check the current block number again, 1if it increased, then it has generated_
—~block and the ledger status is changed

(continues on next page)

26 Chapter 3. Installation

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

[group:1]> getBlockNumber
2

call get interface to acquire name variety, check if the setting is valid
[group:1]> call HelloWorld Oxb3c223fc0bf6646959f254ac4ed4a77e355b50a344 get
Hello, FISCO BCOS

log out console
[group:1]> quit

Note: To deploy contract can also specify the contract version number of the deployment through the
deployByCNS command, using method reference here. To call contract via the cal1ByCNS command, us-
ing the method reference here.

3.3. To deploy or call HelloWorld contract 27

manual/console.html#deploybycns
manual/console.html#callbycns

FISCO BCOS EN Documentation, Release v2.5.0

28

Chapter 3. Installation

cHAPTER 4

Tutorials

This chapter will introduce the basic process and related core concept for quick development of DApp on FISCO
BCOS. We will also provide company users a toolkit tutorial for easier development and deployment.

4.1 Core concept (Revision in progress)

Blockchain is intricated with multiple technical approaches. This chapter will illustrate the basic concept of
blockchain and knowledges about some relative theories. You can skip this chapter if you are familiar with these
techniques.

4.1.1 What is blockchain

Blockchain is a concept proposed after bitcoin. In Satoshi Nakamoto’s Paper about bitcoin, he didn’t mention
about blockchain but described the data structure as “chain of block”.

Chain of block is an organization type of data, a chain-like structure connected by hashes of blocks. Blockchain
refers to a comprehensive technology intricated with many techniques to maintain and manage the chain of block
and form an immutable distributed ledger.

Blockchain technology is adapted to build an unforgeable, immutable and traceable block-chain data structure in
an equal networking environment through transparent and trustable rules, a way to realize and manage trusted
data generation, in & out and usage. As of the technical structure, blockchain is an all-rounded solution formed
by multiple information technologies including distributed structure and storage, block-chain data structure, p2p
networking, consensus algorithm, cryptography algorithm, game theory and smart contract.

Blockchain technology and eco-system is originated from bitcoin. Today, serious look has been taken on this
technology by broad industries like finance, justice, supply chain, entertainment, social administration, IoT, etc.
They want to put its great technical value into extensive distributed cooperation. Meanwhile, progress has also
been seen in the blockchain technology and product model. FISCO BCOS blockchain platform concentrates on
capabilities of improving security, performance, usability, friendly operation, privacy protection, compliance and
regulation based on blockchain technology. It grows together with the community eco-system to better present
functions like multi-participation, smart cooperation, professional division of labor, and value sharing.

29

https://bitcoin.org/bitcoin.pdf

FISCO BCOS EN Documentation, Release v2.5.0

Ledger

Ledger, as its name suggests, is used for managing data of accounts or transaction records and supports func-
tions like distributed ledger, reconciliation and settlement, etc.. In multi-lateral cooperation, partners want to co-
maintain or share a real-time, correct and safe distributed ledger to eliminate inequality of message and improve
efficiency and ensure funds and business security. And blockchain are often regarded as a core technology for
building up distributed sharing ledger, contributed by joint efforts of technologies like block-chain data structure,
multi-party consensus mechanism, smart contract, global state storage, which can realize a consistent, trustable,
safe and immutable traceable sharing ledger. Ledger contains contents like block number, transactions, accounts
and global state.

Block

Block is a data structure built in chronological order. The first block of blockchain is called Genesis Block, and
the latter blocks are identified with block number. Each block number increases one by one. New block will take
the hash of the former block and generate a unique data print by hash algorithm and local block data, so that a
coherent block-chain structure, namely blockchain, is formulated. This delicate data structure design makes it
possible that data on chain saved in order and is traceable and verifiable. If any of the data is changed, it will cost
extremely high because of being stuck in verification of all chain.

The basic data structure of a block is block header and block body. Block header contains block height, hash,
generator’s signature, state root. Block body contains the returning message of a transaction data list. The size of
block will be different according to the size of the transaction list, and it won’t be too large considering network
transmission, up to between 1M to 10M byte.

Transaction

Transaction can be seen as a request data targeting blockchain system to deploy contract, call contract interface,
maintain life cycle of contract and manage assets, conduct value exchange, etc.. The basic data structure of
transaction includes sender, receiver and transaction data. User can create a transaction and sign it with its private
key, then send on chain (through interface like sendRawTransaction). And it will be consensus by several nodes,
executes smart contract code, generates the status data assigned with the transaction and packs it into block and
saves with status data. Now the transaction is confirmed and gets its duty and consistency.

As the transaction is confirmed, a receipt will be created and saved in the block correspondently for storage of
execution information like result code, log and gas consumption. User can use hash of the transaction to check
its receipt to know whether it is finished. Equivalent with “write” transaction, there is a “read-only” method of
invocation for reading data on chain.

It shares the similar request method with transaction but invokes functions by call() (not sendRawTransaction()).
When the node receives “read-only” invocation request, it will return with the requested accessed parameter status
without inviting the request into consensus process to avoid modification of data on chain.

Account

In the blockchain system designed in account model, account represents the uniqueness of user and smart contract.

In the blockchain system adapting private-public key, user creates a public and private key pair and calculates a
unique address string by hash or other algorithms to be the account of this user. User uses private key to manage
assets in this account. Sometimes there might not be storage space for user account, so smart contract will manage
user’s data instead, this account is called “exterior account”.

As of smart contract, when one smart contract is deployed, it has an only address on chain, which is also called
contract account that pointing at the index for status bit, binary code, related status data, etc.. During operation of
smart contract, it will load binary code through this address and visit data in global state storage by the index of
status data. Then, according to the operation result, it will write the data into global state storage and update status
data index in the contract account. To deactivate smart contract, user only has to change its status bit into invalid,
and the real data of the contract account won’t be cleared out usually.

30 Chapter 4. Tutorials

FISCO BCOS EN Documentation, Release v2.5.0

Global state

FISCO BCOS uses account model design, which contains another storage space for smart contract operation result
besides space for blocks and transactions. The status data generated during smart contract execution is confirmed
by consensus mechanism and saved distributedly on each node to ensure global consistency, verifiability and
immutability. And therefore, it’s called “global” status.

Because of status storage space, blockchain is able to save various kinds of data, including user account informa-
tion like balance, etc., smart contract binary code and operation result or other related data. During execution,
smart contract will acquire some data from status storage for calculation, laying the foundation for complex con-
tract logic realization.

On the other hand, status data maintenance costs high in storage, as the chain keeps operating, status data will
keep inflating, like adapting the complex data structure Patricia Tree results in expansion of capacity. Therefore,
status data can be cut or optimized in some cases, or use storage solution like distributed data warehouse for more
extensive data capacity.

Consensus mechanism

Consensus mechanism is the core concept of blockchain, as there will not be blockchain if without consensus.
Blockchain is a distributed system where nodes cooperate to calculate and witness the execution of transactions
and confirm the final result. It brings these loosely-coupled untrusted participants together to be trusted partners,
and keeps the cooperation being consistent and lasting, which can be abstracted as the process of “consensus”,
and the related algorithms and strategies are called consensus mechanism.

Node

A computer installed with software and hardware concerning blockchain system and join the blockchain network
can be called a “node”. Nodes take part in network communication, logic calculation, data verification and storage
of block, transaction and status, etc., and provide client ends interfaces for transaction process and data inquiry.
The identification of node adapts public-private key mechanism, which generates a string of unique Node ID to
ensure its uniqueness on blockchain.

According to the involvement of calculation and storage of data, nodes can be categorized into consensus node
and observation node. Consensus node fully participates in consensus process, packing block as accountant and
verifying block as verifier. Observation node doesn’t join consensus process but synchronize data for verification
and storage as a data service provider.

Consensus algorithm

Consensus algorithm needs to handle several core problems:
1. pick out a role as with ledger right within the system, and start ledgering as a leader.

2. Participator adapts undeniable and immutable algorithm, verifies in multi-levels and takes the ledger from
leader.

3. Data synchronization and distributed cooperation can make sure that all participants receive the same and
correct result.

Common algorithm of blockchain includes Proof of Work, Proof of Stake and Delegated Proof of Stake that
are often used in public chain, and Practical Byzantine Fault Tolerance (PBFT), RAFT that are often used in
consortium chain. Besides, some advanced consensus algorithms often organically combine the above mentioned
algorithms with random number generator to improve security, energy consumption and performance, size or other
issues.

FISCO BCOS consensus module is designed pluggable and supports many consensus algorithms, including PBFT
and RAFT currently, to realize broader and faster consensus algorithms.

4.1. Core concept (Revision in progress) 31

FISCO BCOS EN Documentation, Release v2.5.0

Smart contract

Smart contract, first proposed by Nick Szabo in 1995, is a contract defined in numeric term and can execute
clauses automatically. Numeric term means that contract has to be realized by computer codes, for as long as
the agreement is reached among participants, the right and responsibility established by smart contract will be
executed automatically and its result is undeniable.

FISCO BCOS applies smart contract in not only asset management, rules definition and value exchange, but also
overall configuration, maintenance, governance and authority setting, etc.

Life cycle of smart contract

The life cycle of smart contract contains steps of design, development, test, deployment, operation, upgrade and
deactivation.

Developers edit, compile and unit-test the codes of smart contract, the development language can be solidity, C++,
java, go, javascript, rust, etc.. The choice of language depends on the type of virtual machine. After passing test,
the contract will be published on chain using deployment command and confirmed by consensus algorithm.

The contract will be called by transaction afterwards after validated. When contract needs upgrade, user has to
repeat the above mentioned steps from development to deployment so as to release new contract version, which
will own a new address and independent storage space instead of covering the old one. The new contract can
access the data in the old contract through the interface, or migrate the old contract data into its own storage. The
best practice is of the “behavior contract” for designing execution process and “data contract” for storing data. It
decouples data and contract, so when there is change in process but not data, the new behavior contract can access
the existed data contract.

Revoking an old contract doesn’t mean clearing all of its data, but only setting its status to “invalid” so that this
contract can’t be called any more.

Smart contract virtual machine

To run digital smart contract, blockchain system needs compiler and actuator that are capable of compilation,
analysis and code execution, which is called virtual machine system. After the contract is edited and complied
by the compiler, user sends deployment transaction to deploy it on blockchain system. Once the transaction has
passed consensus process, the system will allocate a binary code with a unique address to reserve contract. When
a contract is called by another transaction, virtual machine actuator loads code from contract storage and executes
to output execution result.

In a blockchain system which emphasizes security, transactional routines and consistency, the virtual machine
should possess sandbox features to block uncertain factors, like random number, system time, exterior file system
and network, as well as invasion of malicious code to make sure consistent execution result and safe process of
one transaction and one contract on different nodes.

Currently popular virtual machines includes EVM, controlled Docker, WebAssembly, etc.. The virtual machine
model of FISCO BCOS adapts modularization design and supports broadly-used EVM. More kinds of adaptable
virtual machines can be expected in the future.

Turing complete

Turing machine or Turing complete is a classical concept in computing field. It is an abstract computing model
proposed by mathematician Alan Mathison Turing (1912-1954) and is stretched into blockchain field, referring
to a model where contract supports logical computing like judgement, jump, cycle and recursion, process ability
of multiple data types like integer, byte string and structure, and even has object-oriented features like inheri-
tance, derivation and interface. This will make it possible for complex transactional logics and complete contract
execution, which is distinct from simple script that only supports operand stack.

Most blockchain systems appearing after 2014 support Turing complete smart contract to make them highly com-
pilable. On top of some basic features of blockchain (like multi-party consensus, immutability, traceability and

32 Chapter 4. Tutorials

FISCO BCOS EN Documentation, Release v2.5.0

security), they can realize contract with transactional logics, such as The Ricardian Contract, and smart contract
is also adaptable.

The execution of contract needs to process the Halting problem, namely to judge whether the program can solve
the input problem within limited time and terminate execution to release resource. Now imagine that a contract is
deployed in the whole network, when being called it will also be executed on every node. And if the contract is an
infinite cycle, then there is possibility to use up all the system resources. So, the addressing of Halting problem is
an important issue of Turing complete computing system in blockchain.

4.1.2 Consortium blockchain

Usually blockchain is divided into 3 types: public blockchain, consortium blockchain and private blockchain.
Public blockchain can be joined by anybody at any time, even anonymously. Private blockchain is owned by an
entity (an agency or a nature person) and is managed and used in private way. Consortium blockchain is usually
formed by multiple entities who made an agreement on certain protocols, or built a business alliance. Whoever
wants to join consortium blockchain needs verification, often with knowable identity. For there is access control,
consortium blockchain is also called “permissioned blockchain”.

Consortium blockchain has access control and identity management in most sections from creation, member
joining to operation and transaction. Operations on chain can be monitored by permission setting. Consensus
mechanism like PBFT based on multi-party multi-round verification voting is adopted here, instead of energy-
consuming POW mining mechanism. Therefore, its network scale is relatively controllable and can be massively
optimized in aspects like transaction delay, transactional consistency and certainty, concurrency and capacity.

Consortium blockchain has inherited the advantages of blockchain and is more adaptable for some difficult busi-
ness cases which requires high performance capacity, regulation and compliance, like finance, justice or others
that related to entity economy. The way consortium blockchain possesses is suitable both for business compliance
and stability and for innovation, which is also been encouraged by the country and the industry.

Performance

Performance indicator

The most popular performance indicator for software system is TPS (Transaction Per Second), the transaction
volume that the system could process and confirm per second. The higher the TPS, the better the performance.
Besides TPS, the performance indicators for blockchain also include Delay ACK and the network scale, etc..

Delay ACK is the total time used from transaction arriving on blockchain to final confirmation after a series of
process including verification, calculation and consensus. For example, each block on bitcoin network costs 10
minutes. And transaction will be processed mostly by 6 blocks, that is 1 hour. In PBFT algorithm, transaction can
be confirmed in seconds with final certainty, which caters to the need of finance transactions.

The network scale refers to the number of co-working consensus nodes the system supports on the premise of
assured TPS and Delay ACK. It’s believed usually by insiders that the node scale is around hundred level if using
PBFT consensus algorithm in a system, and increment of the node scale will result in decrease of TPS and increase
of Delay ACK. The consensus mechanism where the accounting group is chosen by random number algorithm
can fix the problem.

Performance optimization

The is two options of performance optimization: scale up and scale out. scale up is to optimize the configurations
of software and hardware on the basis of limited resources to lift up processing ability, like using more efficient
algorithm or hardware acceleration, etc.. Scale out means good extendibility of system structure. It uses Sharding
and Partition to carry out various users and transaction flows. As long as adding software and hardware resources
appropriately, it can load more requests.

4.1. Core concept (Revision in progress) 33

FISCO BCOS EN Documentation, Release v2.5.0

Performance indicators, software structure, hardware configuration like CPU, internal memories, storage scale
and internet bandwidth, are all closely related. And following the increment of TPS, there will be more pressure
for storage capacity, which needs to be considered comprehensively.

Security

Security is a big topic, especially for blockchain system that built on distributed network with multi-party engage-
ment. In system level, problems like internet attack, system penetration, data corruption or leakage should be
concerned. In transaction level, we should consider about unauthorized operation, logic errors, asset impairment
caused by system stability and privacy invasion.

To ensure security we need to focus on “the shortest board of buckets” and prepare with comprehensive security
strategy providing all-rounded protection that meets high security standard. With best practices in security and
equal security for all participants, this will make sure the security within overall network.

Access mechanism

Access mechanism refers to the processes for either agencies or persons who want to build or join the blockchain,
like multi-party verification of the subject to make sure it has knowable identity, trustable quality and reliable
technology before starting the creation work of consortium blockchain, so the verified node will be added into
blockchain and allocated with public and private keys that can send transactions. After the access process is done,
information of the agency, node or staff will be registered on blockchain or reliable information services, where
every operation can be traced down to each agency and person.

Permission control

Permission control on consortium blockchain means controls on data read-and-write in various sensitivity levels
by different staff. It contains permissions in contract deployment, data access in contract, block data syncing,
system parameters access and change, node start-stop, etc.. There can be more permission controls according to
different transactional needs.

Permissions are allocated to roles if using Role-Based Access Control model design. One example for reference is
to divide roles into operation manager, transaction operator, application developer, O&M manager, administrator.
And each role can be further subdivided to meet other needs. The complete model could be very huge and
complicated, so it should be designed properly to adapt to transactional needs as well as security concerns.

Privacy protection

Business cooperation based on blockchain structure requires all parties to output and share data for calculation
and verification. In complicated business context, agencies want better control on their data. And there is also a
growing need for personal data privacy protection. Therefore, how to protect the private part of shared data and
prevent from privacy leakage during operation becomes an important problem.

Administration is the first area to address privacy protection. When the system starts running, it should keep the
principle of “minimum authorized and express consent”, complete life-cycle management of data collection, stor-
age, application, disclosure, deletion and recovery, and establish daily management and emergency management
system. For those business transactions with high sensitivity, there should be a regulation role for checking and
auditing from a third party so that all sections can be supervised.

Technically, data masking, transaction separation or system physical isolation or other ways can control the scope
of data distribution. Meanwhile, cryptographic methods like Zero-knowledge Proof, Secure Multi-Party Compu-
tation, Ring Signature, Group Signature and Blind Signature can protect data through strong encryption.

34 Chapter 4. Tutorials

FISCO BCOS EN Documentation, Release v2.5.0

Physical isolation

Physical isolation is a radical method to avoid privacy data leakage. In this way, only the participants who share
data can communicate in the network layer, others will not be able to communicate or exchange even one byte of
data.

There is another method called logic isolation in which participants can receive other data but with access limits
or encryption, so unauthorized participants or those with no keys have no right of access and change. However,
with the technological development, data that are limited in access or encrypted may be decoded in the future.

For data with extremely high sensitivity, it’s good to use physical isolation strategy to eradicate possibility of
being cracked. But meanwhile, it will cost more in detailed screening of data’s sensitivity level and need thorough
planning and enough hardware resources to load different data.

Governance and regulation

Governance of consortium blockchain

Governance of consortium involves coordination, incentive mechanism, safe operation and regulation audit of
multiple participants. The core is to sort out the responsibility and right, work flow of each party to build up a
smooth development and O&M system, guarantee compliance and create precaution and emergency management
for security issues. Rules need to be stipulated to make sure every participant reaches agreement and conducts
thorough execution to accomplish governance.

A typical reference model for consortium blockchain is that all participants co-found a consortium blockchain
committee for joint discussion and decision making, design roles and tasks according to transaction needs, for
instance, some agencies work on development and some join operation management, and every agency takes
part in transactions and O&M with smart contract managing rules and maintaining system data. The committee
and regulator can be given with right of permission control, verifying and setting permissions for transactions,
agencies and staff. When it comes to emergency, they can carry out emergency operations like resetting accounts
and adjusting transactions through agreed rules in smart contract. When the system needs to be upgraded, the
committee will take the responsibility of coordinating each party.

On a consortium blockchain with complete governance mechanism, there will be peer-to-peer cooperation of all
participants, including asset transactions and data exchanging, which improves operation efficiency greatly and
business innovation as well as guarantees the compliance and security.

Fast deployment

The general steps to build a blockchain system include: acquire hardware resources including server, internet,
memories, hard disk, etc.; configure the environment by choosing an operation system, opening a network port
and making strategies, bandwidth planning and storage space allocation, etc.; acquire binary executable soft-
ware or compile it from the source code; configure the blockchain system, including genesis block configuration,
parameter configuration and log configuration; configure multi-party interconnection, including node access con-
figuration, port discovery, consensus participants list, etc.; configure client ends and developer tools, including the
console and SDK, etc.. There are so many complicated and repetitive steps, like the management of certificates
and public and private keys, which form a high entry barrier.

Therefore, to simplify and quicken the process of building blockchain with low error rate and cost, these need to be
considered: First, standardize the target deployment platform and prepare in advance the operation system, reliable
software list, network bandwidth, network strategy and other key software and hardware, match the version with
parameters to make the platform available and ready for use. Currently there are cloud services or docker that can
help building standardized platform.

Then, take the user experience into consideration by optimizing the formation, configuration and networking of
blockchain software and offering toolkit for fast and automatic networking, so users will not be tangled with
miscellaneous details but can start operating blockchain with few steps.

4.1. Core concept (Revision in progress) 35

FISCO BCOS EN Documentation, Release v2.5.0

FISCO BCOS emphasizes the deployment experience for users and offers command-line for one-click deployment
to help developers expedite development and debugging environment building. It provides networking tool of
business level for flexible parameters configuration of the host and network, manages relative certificates for
easier cooperation among companies when they co-network on blockchain. By optimized deployment method, it
shortens the time of building blockchain into a few minutes or within half an hour.

Data governance

Blockchain requires data to be verified in each layer and leaves traceable records. Usually, the solution is to
save all the data on all nodes (except lightweight nodes), resulting in data inflation and capacity intensity. It is
especially obvious with cases that bear massive services. After some time, regular storage solution has limited
data capacity, and it costs high to adopt mass storage. Besides, security should also be concerned. The permanent
storage of all data may face risk of data leakage. Therefore, it is important to better the design of data governance.

Some strategies of data governance are concluded here: cutting and transfer, parallel expansion and distributed
storage. It depends on specific cases to determine which one is suitable.

For data with strong temporal features, like in a case that account clearing happens one time a week, then the data
before the week will not be calculated or verified again. The old data can be transferred from node to big data
storage to meet the need of data traceability and verifiability and long storage life for transactions. When there is
lower data pressure for nodes and history data is kept off-line, more attention can be put on security strategies.

When it comes to snowballing transaction cases, like when users and contract copies increase tremendously, it can
allocate each of them to different logic partitions, each of which owns independent storage space and bears certain
quantity of data. When data is near capacity limit, it will arrange more resources to store new data. Partition
design makes it easier to do resources allocation and cost management.

Combining the strategies of data cutting and transfer with parallel expansion, the cost of data capacity and security
of data can get better controlled, and it also benefits the execution of massive transactions.

O&M monitoring

Blockchain system presents high consistency in its foundation and operation logic. Different nodes often share the
same software and hardware system. Its standardized features bring convenience for operation and maintenance
staff. They can use the commonly-used tools, O&M strategy and workflow or others to build, deploy, configure
blockchain system and handle faults to realize low O&M cost and high efficiency.

O&M staff has limited authority to operate in consortium blockchain. They have permission to modify system
configuration, process start-stop, check operation log and detect troubles, but they are not involved in transactions
and cannot check user data or transaction data that rates high in privacy security.

During the operation of system, they can monitor all the operational indicators and evaluate the health of system
status through monitoring system. It will send warning messages when there appear faults, so the staff can response
and handle them immediately.

The monitoring system covers status of fundamental environment, like CPU occupation rate, system memories
rate and incremental, 1O status of disk, internet connection quantity and traffic, etc..

The monitoring of blockchain system includes block number, transaction volume and virtual machine computa-
tion, and voting and block generation of consensus nodes, etc..

The monitoring of interface includes counting, time consumed, and success rate of API callings.

The monitoring data can be output from log or network interface for agencies to connect with the existing moni-
toring systems so the monitoring ability and O&M workflows can be multiplexed. When the O&M staff receive
the warning message, they can use the O&M tool offered by consortium blockchain to view system information,
modify configuration, start-stop process and handle faults, etc..

36 Chapter 4. Tutorials

FISCO BCOS EN Documentation, Release v2.5.0

Regulation audit

With the development of blockchain technology and business exploration, the blockchain platform needs a func-
tion to support regulation to prevent it from being against regulation rules and laws, or becoming the carrier for
money washing, illegal financing and criminal transactions.

The audit function is mainly designed to meet the needs of audit and internal control, responsibility confirmation
and event tracing of blockchain system. It should be combined with effective techniques to do accurate audit
management according to the specific industrial standards.

Regulators can join the blockchain system as nodes, or interact with blockchain system through interfaces. They
can synchronize all the data for audit analysis and trace overall transaction flows. And if they detect exceptions,
they can send instruction with regulation authority. Also, they can monitor transactions, participants and accounts
to realize “penetrative regulation”.

FISCO BCOS supports regulation audit in aspects like roles and access control design, function interface and audit
tool.

4.2 Build the first blockchain application

This chapter will introduce a whole process of business application scenario development based on FISCO BCOS
blockchain. The introduce includes business scenario analysis, contract design implementation, contract com-
pilation, and blockchain development. Finally, we introduce an application module implementation which is to
implement calling access to the contract on blockchain through the Web3SDK we provide.

This tutorial requires user to be familiar with the Linux operating environment, has the basic skills of Java devel-
opment, is able to use the Gradle tool, and is familiar with Solidity syntax.

Through the tutorial, you will learn the following:
1. How to express the logic of a business scenario in the form of a contract
2. How to convert Solidity contract into Java class
3. How to configure Web3SDK
4. How to build an application and integrate Web3SDK into application engineering
5. How to call the contract interface through Web3SDK, and to understand its principle

The full project source code for the sample is provided in the tutorial and users can quickly develop their own
applications based on it.

Important: Please refer to Installation documentation to complete the construction of the FISCO BCOS
blockchain and the download of the console. The operation in this tutorial is assumed to be carried out in the
environment of the documentation building.

4.2.1 Sample application requirements

Blockchain is naturally tamper-proof and traceable. These characteristics make it more attractive to the financial
sector. This article will provide an easy example of asset management development and ultimately achieve the
following functions:

* Ability to register assets on blockchain
* Ability to transfer funds from different accounts

* Ability to check the amount of assets in the account

4.2. Build the first blockchain application 37

https://solidity.readthedocs.io/en/latest/
../installation.html

FISCO BCOS EN Documentation, Release v2.5.0

4.2.2 Contract design and implementation

When developing an application on blockchain, for combining with business requirements, it is first necessary to
design the corresponding smart contract to determine the storage data that contract needs, and on this basis, to
determine the interface provided by the smart contract. Finally, to specifically implement each interface.

Storage design

FISCO BCOS provides a contract CRUD interface development model, which can create table through contracts,
and add, delete, and modify the created table. For this application, we need to design a table t_asset for storage
asset management. The table’s fields are as follows:

* account: primary key, asset account (string type)
* asset_value: asset amount (uint256 type)

account is the primary key, which is the field that needs to be passed when the t_asset table is operated. The
blockchain queries the matching records in the table according to the primary key field. The example of t_asset
table is as follow:

Interface design

According to the design goals of the business, it is necessary to implement asset registration, transfer, and query
functions. The interfaces of the corresponding functions are as follows:

// query the amount of assets

function select (string account) public constant returns (int256, uint256)

// asset registration

function register(string account, uint256 amount) public returns (int256)

// asset transfer

function transfer(string from_asset_account, string to_asset_account, uint256
—amount) public returns (int256)

Full source

pragma solidity 70.4.24;
import "./Table.sol";

contract Asset {
// event
event RegisterEvent (int256 ret, string account, uint256 asset_value);
event TransferEvent (int256 ret, string from_account, string to_account,
—uint256 amount) ;

constructor () public {
// create a t_asset table in the constructor
createTable () ;

function createTable () private {
TableFactory tf = TableFactory (0x1001);

// asset management table, key : account, field : asset_value
// account (primary key) / amount /

/) | mmmmmmm e o /

/7] account / asset_value /

A [————— /

//

// create table

(continues on next page)

38 Chapter 4. Tutorials

../manual/smart_contract.html#crud

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

tf.createTable ("t_asset", "account", "asset_value");

function openTable () private returns(Table) {
TableFactory tf = TableFactory (0x1001);
Table table = tf.openTable("t_asset");
return table;

/%
description: query asset amount according to asset account

parameter:
account: asset account

return value
parameterl: successfully returns 0, the account does not exist and,
—returns -1
parameter2: valid when the first parameter is 0, the amount of assets
*/
function select (string account) public constant returns (int256, uint256) {
// open table
Table table = openTable();
// query
Entries entries = table.select (account, table.newCondition());
uint256 asset_value = 0;
if (0 == uint256(entries.size())) {
return (-1, asset_value);
} else {
Entry entry = entries.get (0);
return (0, uint256(entry.getlInt ("asset_value")));

/%
description : asset registration
parameter
account : asset account
amount : asset amount
return value
0 regist successfully
-1 asset account already exists
-2 other error
*/
function register (string account, uint256 asset_value) public returns (int256) {
int256 ret_code = 0;
int256 ret= 0;

uint256 temp_asset_value = 0;

// to query whather the account exists
(ret, temp_asset_value) = select (account);
if(ret != 0) {

Table table = openTable();

Entry entry = table.newEntry();

entry.set ("account", account);

entry.set ("asset_value", int256 (asset_value));
// insert

int count = table.insert (account, entry);
if (count == 1) {

// true

ret_code = 0;

(continues on next page)

4.2. Build the first blockchain application 39

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

} else {
// false.
ret_code

no permission or other error
72’-

}

} else {
// account already exists
ret_code -1;

emit RegisterEvent (ret_code, account, asset_value);

return ret_code;

/ *

description asset transfer

parameter
from_account transferred asset account
to_account received asset account
amount transferred amount

return value
0 transfer asset successfully
-1 transfe asset account does not exist
-2 receive asset account does not exist
-3 amount is insufficient
-4 amount 1is excessive
-5 other error

*/

function transfer(string from_account, uint256 amount)
—public returns (int256) {

// query transferred asset account information

int ret_code 0;

int256 ret 0;

uint256 from_asset_value

uint256 to_asset_value

string to_account,

0;

0;

// whather transferred asset account exists?

(ret, from_asset_value) = select (from_account);
if(ret != 0) {
ret_code = -1;
// not exist
emit TransferEvent (ret_code, from_account, to_account, amount);
return ret_code;
}
// whather received asset account exists?
(ret, to_asset_value) = select (to_account);
if(ret !'= 0) {
ret_code = -2;
// not exist
emit TransferEvent (ret_code, from_account, to_account, amount);
return ret_code;
}
if (from_asset_value < amount) {
ret_code = -3;
// amount of transferred asset account is insufficient
emit TransferEvent (ret_code, from_account, to_account, amount);

return ret_code;

(continues on next page)

40 Chapter 4. Tutorials

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

if (to_asset_value + amount < to_asset_value) {
ret_code = —4;
// amount of received asset account 1s excessive
emit TransferEvent (ret_code, from_account, to_account, amount);
return ret_code;

Table table = openTable();

Entry entry0

table.newEntry () ;
entry0O.set ("account", from_account);

entry0.set ("asset_value", int256 (from_asset_value - amount));
// update transferred account
int count = table.update (from_account, entry0, table.newCondition());
if (count != 1) {
ret_code = -5;

// false? no permission or other error?
emit TransferEvent (ret_code, from_account, to_account, amount);
return ret_code;

Entry entryl = table.newEntry();

entryl.set ("account", to_account);

entryl.set ("asset_value", int256(to_asset_value + amount));
// update received account

table.update (to_account, entryl, table.newCondition());
emit TransferEvent (ret_code, from_account, to_account, amount);

return ret_code;

Note: The implementation of the Asset.sol contract requires to introduce a system contract interface file
Table.sol provided by FISCO BCOS. The system contract file’s interface is implemented by the underlying
FISCO BCOS. When a business contract needs to operate CRUD interface, it is necessary to introduce the interface
contract file. Table. sol contract detailed interface reference here.

4.2.3 Contract compiling

In the previous section, we designed the storage and interface of the contract Asset . sol according to business
requirements, and implemented them completely. However, Java program cannot directly call Solidity contract.
The Solidity contract file needs to be compiled into a Java file first.

The console provides a compilation tool that stores the Asset . sol contract file in the console/contract/
solidity directory. Compile with the so12java. sh script provided in the console directory, as follows:

switch to the fisco/console/ directory

$ cd ~/fisco/console/

compile the contract, specify a Java package name parameter later, you can,
—specify the package name according to the actual project path.

$./sol2java.sh org.fisco.bcos.asset.contract

After successful operation, the java, abi, and bin directories will be generated in the console/contracts/
sdk directory as shown below.

|-— abi # The generated abi directory, which stores the abi file generated by,
—Solidity contract compilation.
| |-— Asset.abi

(continues on next page)

4.2. Build the first blockchain application 41

../manual/smart_contract.html#crud

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

| | -— Table.abi

|-— bin # The generated bin directory, which stores the bin file generated by,
—Solidity contract compilation.

| | -—— Asset.bin

| | -— Table.bin

|-— contracts # The source code file that stores Solidity contract. Copy the_
—contract that needs to be compiled to this directory.

| |-— Asset.sol # A copied Asset.sol contract, depends on Table.sol

| |-— Table.sol # The contract interface file that implements the CRUD operation
|-— java # Storing compiled package path and Java contract file
| |-— org

| |-—fisco
| | -—bcos

| | ——asset

| | ——contract

| |-—-Asset.java # Java file generated by the Asset.
—sol contract

| |--Table.java # Java file generated by the Table.
—sol contract

|-— sol2java.sh

The org/fisco/bcos/asset/contract/ package path directory is generated in the java directory. The
directory contains two files Asset . java and Table. java, where Asset . java is the file required by the
Java application to call the Asset.sol contract.

Asset . java’s main interface:

package org.fisco.bcos.asset.contract;

public class Asset extends Contract {

// Asset.sol contract transfer interface generation

public RemoteCall<TransactionReceipt> transfer (String from_account, String to_
—account, BigInteger amount) ;

// Asset.sol contract register interface generation

public RemoteCall<TransactionReceipt> register (String account, BigInteger
—asset_value) ;

// Asset.sol contract select interface generation

public RemoteCall<Tuple2<BigInteger, BigInteger>> select (String account);

// Load the Asset contract address, to generate Asset object
public static Asset load(String contractAddress, Web3j web3j, Credentials,
—credentials, ContractGasProvider contractGasProvider) ;

// Deploy Assert.sol contract, to generate Asset object
public static RemoteCall<Asset> deploy (Web3j web3j, Credentials credentials,
—ContractGasProvider contractGasProvider);

}

The load and deploy functions are used to construct the Asset object, and the other interfaces are used to call the
interface of the corresponding solidity contract. The detailed use will be introduced below.

4.2.4 SDK configuration

We provide a Java engineering project for development. First, get the Java engineering project:

get the Java project project archive

$ cd ~

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/asset-app.
—~tar.gz

extract the Java project project asset—-app directory

(continues on next page)

42 Chapter 4. Tutorials

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

$ tar -zxf asset-app.tar.gz

Note:

o If the asset-app.tar.gz cannot be downloaded for a long time due to network problems, try curl -LO
https://www.fisco.com.cn/cdn/deps/tools/asset-app.tar.gz

The directory structure of the asset-app project is as follows:

|-— build.gradle // gradle configuration file
|-— gradle
| | -— wrapper
| | -— gradle-wrapper.jar // related code implementation for downloading_
—Gradle
| | -— gradle-wrapper.properties // Configuration information used by the,
—wrapper, such as the version of gradle
|-— gradlew // shell script for executing wrapper commands under Linux or Unix
|-— gradlew.bat // batch script for executing wrapper commands under Windows
|-— src
| |-— main
| | |-— Java
| | |-— org
| | |-— fisco
| | | -— bcos
| | | -— asset
| | |-— client // the client calling class
| | |-— AssetClient. java
| | |-— contract // the Java contract class
| | |-— Asset.java
| |-— test
| | -— resources // resource files
| |-— applicationContext.xml // project configuration file
| |-— contract.properties // file that stores the deployment contract,
—address
|-— log4j.properties // log configuration file
|-— contract // Solidity contract files
|-— Asset.sol
|-— Table.sol

|-— asset_run.sh // project running script

Project introduced Web3SDK
The project’s build.gradle file has been introduced to Web3SDK and no need to be modified. The
introduction method is as follows:

* Web3SDK introduces Ethereum’s solidity compiler-related jar package, so you need to add Ethereum’s
remote repository to the build.gradle file:

repositories {
maven {
url "http: //maven.aliyun.com/nexus/content/groups/public/"
}
maven { url "https: //dl.bintray.com/ethereum/maven/" }
mavenCentral ()

¢ introduce the Web3SDK jar package

4.2. Build the first blockchain application 43

FISCO BCOS EN Documentation, Release v2.5.0

compile ('org.fisco-bcos: web3sdk: 2.1.0")

Certificate and configuration file

* Blockchain node certificate configuration

Copy the SDK certificate corresponding to the blockchain node

go to the ~ directory

copy the node certificate to the project's resource directory
cd ~

cp fisco/nodes/127.0.0.1/sdk/x asset-app/src/test/resources/

O S oS

* applicationContext.xml
Note:

If the channel_listen_ip (If the node version is less than v2.3.0, check listen_ip) set in the chain is 127.0.0.1 or
0.0.0.0 and the channel_port is 20200, the applicationContext .xml configuration does not need to be
modified. If the configuration of blockchain node is changed, you need to modify applicationContext.
xml. For details, please refer to SDK Usage Document.

4.2.5 Business development

We’ve covered how to introduce and configure the Web3SDK in your own project. This section describes how to
invoke a contract through a Java program, as well as an example asset management note. The asset-app project
already contains the full source code of the sample, which users can use directly. Now introduces the design and
implementation of the core class AssetClient.

AssetClient. java: The deployment and invocation of the contract is implemented by calling Asset . java,
The path /src/main/java/org/fisco/bcos/asset/client, the initialization and the calling process
are all in this class.

* initialization
The main function of the initialization code is to construct the Web3j and Credentials’ objects, which are needed to
be used when creating the corresponding contract class object (calling the contract class’s deploy or load function).

// Initialize in function initialize

ApplicationContext context = new ClassPathXmlApplicationContext (
—"classpath:applicationContext.xml") ;

Service service = context.getBean (Service.class);

service.run () ;

ChannelEthereumService channelEthereumService = new ChannelEthereumService () ;
channelEthereumService.setChannelService (service) ;

// initialize the Web3j object

Web3j web3j = Web3j.build(channelEthereumService, 1);

// initialize the Credentials object

Credentials credentials = Credentials.create (Keys.createEcKeyPair());

* construct contract class object

Contract objects can be initialized using the deploy or load functions, which are used in different scenarios. The
former applies to the initial deployment contract, and the latter is used when the contract has been deployed and
the contract address is known.

// deploy contract
Asset asset = Asset.deploy(web3]j, credentials, new StaticGasProvider (gasPrice,
—gasLimit)) .send();

(continues on next page)

44 Chapter 4. Tutorials

../sdk/sdk.html#spring

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

// load contract address
Asset asset = Asset.load(contractAddress, web3j, credentials, new_
—StaticGasProvider (gasPrice, gasLimit));

* interface calling

Use the contract object to call the corresponding interface and handle the returned result.

// select interface calling

Tuple2<BigInteger, BigInteger> result = asset.select (assetAccount) .send();

// register interface calling

TransactionReceipt receipt = asset.register (assetAccount, amount) .send();

// transfer interface

TransactionReceipt receipt = asset.transfer (fromAssetAccount, toAssetAccount,
—amount) .send () ;

4.2.6 Running

So far we have introduced all the processes of the asset management application using the blockchain and imple-
mented the functions. Then we can run the project and test whether the function is normal.

 compilation

switch to project directory
$ cd ~/asset-app

compile project

$./gradlew build

After the compilation is successful, the dist directory will be generated under the project root directory. There
is an asset_run. sh script in the dist directory to simplify project operation. Now let’s start by verifying the
requirements set out in this article.

* deploy the Asset .sol contract

enter dist directory

$ cd dist

$ bash asset_run.sh deploy

Deploy Asset successfully, contract address is_,
—0xd09ad04220e40bb8666e885730c8c460091a4775

* register asset

$ bash asset_run.sh register Alice 100000
Register account succ sfully => account: Alice, value: 100000
$ bash asset_run.sh register Bob 100000

Register account su Ly => account: Bob, wvalue: 100000

* query asset

$ bash asset_run.sh query Alice
account Alice, wvalue 100000

$ bash asset_run.sh query Bob
account Bob, wvalue 100000

e transfer asset

S bash asset_run.sh transfer Alice Bob 50000

Transfer succ sfully => from_account: Alice, to_account: Bob, amount: 50000
$ bash asset_run.sh query Alice

account Alice, value 50000

(continues on next page)

4.2. Build the first blockchain application 45

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

$ bash asset_run.sh query Bob
account Bob, wvalue 150000

Summary: So far, we have built an application based on the FISCO BCOS Alliance blockchain through contract
development, contract compilation, SDK configuration and business development.

46 Chapter 4. Tutorials

CHAPTER B

Manual (Revision in progress)

This chapter provides an operation tutorial of FISCO BCOS platform to introduce its functions and operation
methods.

5.1 Getting Executables

Users can choose any of the following methods to get FISCO BCOS executable. It is recommended to download
the precompiled binaries from GitHub.

* The official statically linked precompiled files can be used on Ubuntu 16.04 and CentOS 7.2 version or later.
* docker image is provided officially, welcome to use. docker-hub address

* You can compile from the source code, visit here source code compilation.

5.1.1 Downloading precompiled fisco-bcos

The statically linked precompiled executable provided has been tested on Ubuntu 16.04 and CentOS 7. Please
download the latest released pre-compiled executable from the Release.

5.1.2 docker image
From v2.0.0 version, we provide the docker image for the tag version. Corresponding to the master branch, we
provide image of 1atest tag. For more docker tags please refer tohere.

build_chain.sh script adds the —d option to provide docker mode building for developers to deploy. For details,
please refer to here.

Note: For using build_chain.sh script easily, we start docker by using -——network=host network mode. Users
may need to customize and modify according to their own network scenarios when they actually use.

47

https://hub.docker.com/r/fiscoorg/fiscobcos
https://github.com/FISCO-BCOS/FISCO-BCOS/releases
https://hub.docker.com/r/fiscoorg/fiscobcos/tags
build_chain.html#id4

FISCO BCOS EN Documentation, Release v2.5.0

5.1.3 Source code compilation

Note: The source code compilation is suitable for the experienced developers. You are required to download
all library dependencies during compilation. Network connection would required and would take 5-20 minutes in
total.

FISCO BCOS is using generic CMake to generate platform-specific build files, which means the steps are similar
for most operating systems:

1. Install build tools and dependent package (depends on platform).
2. Clone code from FISCO BCOS.

3. Run cmake to generate the build file and compile.

Installation dependencies

e Ubuntu

Ubuntu 16.04 or later is recommended. The versions below 16.04 have not been tested. You will require to have
the build tools build tools and 1ibss1 for compiling the source code.

sudo apt install -y g++ libssl-dev openssl cmake git build-essential autoconf
—texinfo flex patch bison libgmp-dev

¢ CentOS

CentOS7 version or later is recommended.

$ sudo yum install -y epel-release
$ sudo yum install -y openssl-devel openssl cmake3 gcc-c++ git flex patch bison,
—gmp-static

¢ macOS

xcode10 version and above are recommended. macOS dependent package installation depends on Homebrew.

’brew install openssl git flex patch bison gmp ‘

Code clone

’git clone https://github.com/FISCO-BCOS/FISCO-BCOS.git

Compile

After compilation, binary files are located at FISCO-BCOS/build/bin/fisco-bcos.

$ cd FISCO-BCOS

$ git checkout master

$ mkdir -p build && cd build

please use cmake3 for CentOS

$ cmake

#To add —-j4 to accelerate compilation by 4 compilation processes
$ make

Note:

48 Chapter 5. Manual (Revision in progress)

https://cmake.org
https://github.com/FISCO-BCOS/FISCO-BCOS
https://brew.sh/

FISCO BCOS EN Documentation, Release v2.5.0

e If dependency libs cannot be downloaded for a long time due to network problems, try
https://gitee.com/FISCO-BCOS/LargeFiles/tree/master/libs , and put in FISCO-BCOS/deps/src/

Compile options
* BUILD_GM, off by default, national cryptography compilation flag. To enable it, use cmake
-DBUILD_GM=on
» TESTS, off by default, unit test compilation flag. To enable it, use cmake -DTESTS=on
¢ DEMO, off by default, test program compilation switch. To open it through cmake —-DDEMO=on
* TOOL, off by default, tools program compilation switch. To open it throughcmake -DTOOL=on

e BUILD_STATIC, off by default, static compilation switch, only supports Ubuntu. To open it through
cmake —-DBUILD_STATIC=on

¢ Generate source documentation.

Install Doxygen

$ sudo apt install -y doxygen graphviz

Generate source documentation locate at build/doc
$ make doc

5.2 Hardware requirements

Note: Since multiple nodes share network bandwidth, CPU, and memory resources, it is not recommended to
configure too much nodes on one machine in order to ensure the stability of service.

The following table is a recommended configuration for single-group and single-node. Node consumes resources
in a linear relationship with the number of groups. You can configure the number of nodes reasonably according
to actual business requirement and machine resource.

5.3 Supported Platforms

e CentOS 7.2+
e Ubuntu 16.04
¢ macOS 10.14+

5.4 Chain building script

Important: The goal of the script is to let users apply FISCO BCOS as quickly as possible. For the enterprise
applications deploying FISCO BCOS, please refer to Enterprise Deployment Tools .

FISCO BCOS has provided build_chain script to help users quickly build FISCO BCOS alliance chain.
By default, the script downloads master branch of the latest version pre-compiles executable program from
GitHubfor building related environment.

5.2. Hardware requirements 49

../enterprise_tools/index.html
https://github.com/FISCO-BCOS/FISCO-BCOS

FISCO BCOS EN Documentation, Release v2.5.0

5.4.1 Script introduction

* build_chain.sh is used to quickly generate configuration files of a chain node. For the script that
depends on openssl, please according your own operating system to install openssl 1.0.2 version
and above. The source code of script is located at FISCO-BCOS/tools/build_chain.sh.

* For quick experience can use the —1 option to specify the node IP and number. —f option supports the
creation of FISCO BCOS chains for complex business scenarios by using a configuration file in a specified
format. -1 and —£ options must be specified uniquely and cannot coexist.

e It is recommended to use —T option for testing. —T enables log level to DEBUG, p2p module listens for
0.0.0.0 by default.

Note: In order to facilitate development and experience, the default listening IP of the P2P module is 0.0.0.0. For
security reasons, please modify it to a safe listening address according to the actual business network situation,
such as the internal IP or a specific external IP.

5.4.2 Help
Usage:

-1 <IP list> [Required] "ipl:nodeNuml,ip2:nodeNum2" e.g:
—"192.168.0.1:2,192.168.0.2:3"

—-f <IP list file> [Optional] split by line, every line

—should be "ip:nodeNum agencyName groupList p2p_port,channel_port, jsonrpc_port".
—eg "127.0.0.1:4 agencyl 1,2 30300,20200,8545"

—e <FISCO-BCOS binary path> Default download fisco-bcos from GitHub.
—If set —-e, use the binary at the specified location

-0 <Output Dir> Default ./nodes/

-p <Start Port> Default 30300,20200,8545 means p2p_port,,
—start from 30300, channel_port from 20200, jsonrpc_port from 8545

-1 <Host ip> Default 127.0.0.1. If set -i, listen 0.0.0.
%O

-v <FISCO-BCOS binary version> Default get version from https://github.
—com/FISCO-BCOS/FISCO-BCOS/releases. If set use specificd version binary

—-s <DB type> Default rocksdb. Options can be rocksdb /
—mysqgl / scalable, rocksdb is recommended

-d <docker mode> Default off. If set -d, build with docker

—-c <Consensus Algorithm> Default PBFT. Options can be pbft / raft /
—rpbft, pbft is recommended

—-C <Chain id> Default 1. Can set uint.

—-g <Generate guomi nodes> Default no

-z <Generate tar packet> Default no

-t <Cert config file> Default auto generate

-k <The path of ca root> Default auto generate, the ca.crt and ca.

—key must in the path, if use intermediate the root.crt must in the path
—-K <The path of sm crypto ca root> Default auto generate, the gmca.crt and
—gmca.key must in the path, if use intermediate the gmroot.crt must in the path

-D <Use Deployment mode> Default false, If set -D, use deploy mode,
—directory struct and make tar

-G <channel use sm crypto ssl> Default false, only works for guomi mode

-X <Certificate expiration time> Default 36500 days

-T <Enable debug log> Default off. If set -T, enable debug log

-S <Enable statistics> Default off. If set -S, enable statistics

-F <Disable log auto flush> Default on. If set -F, disable log auto,,
—flush

—-E <Enable free_storage_evm> Default off. If set —-E, enable free_
—~storage_evm

-h Help

(continues on next page)

50 Chapter 5. Manual (Revision in progress)

https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/tools/build_chain.sh

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

e.qg
./tools/build_chain.sh -1 "127.0.0.1:4"

5.4.3 Option introduction
loption:

Use to specify the chain to be generated and the number of nodes under each IP, separated by commas. The script
generates configuration file of corresponding node according to the input parameters. The port number of each
node is incremented from 30300 by default. All nodes belong to the same organization and Group.

foption

+ Use to generate node according to configuration file. It supports more
—customization than "1° option.

+ Split by row. Each row represents a server, in the format of "IP:NUM AgencyName,
—GroupList . Items in each line are separated by spaces, and there must be xxno
—blank linesx*x.

+ "IP:NUM represents the IP address of the machine and the number of nodes on the_
—machine. AgencyName represents the name of the institution to specifies the
—institution certificate to use. "GroupList® represents the group that the
—generated node belong to, split by , . For example, "192.168.0.1:2 agencyl 1,2
—represents that a machine with "ip® which is 7192.168.0.1° exists two nodes. For,,
—example, 192.168.0.1:2 agencyl 1,2 represents that there are two nodes on the
—machine with ip 192.168.0.1. These two nodes belong to agency ~agencyl’ and
—belong to groupl and group2.

()

The following is an example of a configuration file. Each configuration item separated by a space, where
GroupList represents the group that the server belongs to.

192.168.0.1:2 agencyl 1,2
192.168.0.1:2 agencyl 1,3
192.168.0.2:3 agency?2 1
192.168.0.3:5 agency3 2,3
192.168.0.4:2 agency2 3

Suppose the above file is named ipconf£, using the following command to build a chain, which indicates to use
configuration file, to set the log level to DEBUG.

$ bash build_chain.sh —-f ipconf -T

eoption[Optional]

is used to specify full path where £isco-bcos binary is located.Script will cope £isco-bcos to the directory
named by IP number. If no path to be specified, the latest binary program of master branch is downloaded from
GitHub by default.

download the latest release binary from GitHub to generate native 4 nodes
$ bash build_chain.sh -1 "127.0.0.1:4"

use bin/fisco-bcos binary to generate native 4 nodes

$ bash build_chain.sh -1 "127.0.0.1:4" —-e bin/fisco-bcos

ooption[Optional]

specifies the directory where the generated configuration is located.

5.4. Chain building script 51

FISCO BCOS EN Documentation, Release v2.5.0

poption[Optional]

specifies the starting port of the node. Each node occupies three ports which are p2p, channel, and jsonrpc,
respectively. The ports are split by, and three ports must be specified. The ports used by different nodes under the
same IP address are incremented from the starting port.

Two nodes occupies 30300,20200,8545" and "30301,20201,8546° respectively.
$ bash build_chain -1 127.0.0.1:2 -p 30300,20200,8545

voption[Optional]

Used to specify the binary version used when building FISCO BCOS. build_chain downloads the latest
version of [Release Page] (https://github.com/FISCO-BCOS/FISCO-BCOS/releases) by default. When set-
ting this option, the download parameter specifies the version version and sets [compatibility].
supported_version=${version} in the configuration file config. ini. If you specify the binary with
the —e option, to use the binary and configure [compatibility].supported_version=${version}
as the latest version number of [Release page](https://github.com/FISCO-BCOS/FISCO-BCOS /releases).

doption[Optional]

Use the docker mode to build FISCO BCOS. When using this option, the binary is no longer extracted, but users
are required to start the node machine to install docker, and their accounts have docker permission, which means
their accounts should in the docker group. Use following command to start node at node home.

$./start.sh

The command to start the node in script start.sh is as follows

S docker run -d —-rm ——-name nodePath} -v nodePath}:/data —-network=host -w=/
—data fiscoorg/fiscobcos:latest -c config.ini

soption[Optional]
There are parameter options. The parameter is the name of db. Currently it supports three modes: rocksdb, mysql,
external and scalable. RocksDB is used by default.

* rocksdb use RocksDB as backend database.

* mysql needs to configure the information relates to mysql in the group ini file.

* external needs to configure topic information and start amdb-proxy.

¢ scalable mode, block data and state data are stored in different RocksDB databases, and block data is
stored in rocksdb instance named after block height. The rocksdb instance used to store block data is scroll
according to the configuration scroll_threshold_multiple*1000 and block height. If chain data
need to be tailored, the scalable mode must be used.

coption[Optional]
There are parameter options. The parameter is the consensus algorithm type, and currently supports PBFT, Raft,
rPBFT. The default consensus algorithm is PBFT.

* PBFT: Setthe node consensus algorithm to PBFT.

e Raft: Setthe node consensus algorithm to Raft.

e rPBFT: Setthe node consensus algorithm to rPBFT.

52 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

coption[Optional]

Used to specify the chain identifier when building FISCO BCOS. When this option is set, using parameter to set
[chain] .id in the configuration file config. ini. The parameter range is a positive integer and the default
setting is 1.

The chain is identified as 2
S bash build_chain.sh -1 127.0.0.1:2 -C 2

goption[Optional]

No parameter option. When setting this option, to build the national cryptography version of FISCO BCOS. The
binary fisco-bcos is required to be national cryptography version when using the g option.

zoption[Optional]

No parameter option. When setting this option, the tar package of node is generated.

toption[Optional]

This option is used to specify the certificate configuration file when certificate is generated.

Toption[Optional]

No parameter option. When setting this option, set the log level of node to DEBUG. The related configuration of
log reference here.

koption[Optional]
Use the private key specified by the user and the certificate issued the agency and node certification. The parameter

is the path of ca.crt/ca.key. If the specified private key and certificate are intermediate Ca, root.crt should also be
included in this folder to store the upper certificate chain.

Koption[Optional]
Use the private key specified by the user and the certificate issued the agency and node certification in guomi

mode. The parameter is the path of gmca.crt/gmca.key. If the specified private key and certificate are intermediate
Ca, gmroot.crt should also be included in this folder to store the upper certificate chain.

Gi%&Tii[Optional]

From 2.5.0, when use smcrypto mode, user can config to use GM SSL between node and sdk, the option set
chain.sm_crypto_channel=true.

Doption[Optional]

No parameter option. When this option is set, the directory name of the generated node is IP_P2P-port.

Eoption[Optional]

No parameter option, when setting this option, [Free Storage] (design/virtual_machine/gas.html#evm-gas) Gas
mode is enabled, and Free Storage Gas mode is disabled by default.

5.4. Chain building script 53

./configuration.html#id6

FISCO BCOS EN Documentation, Release v2.5.0

5.4.4 Node file organization

» cert folder stores root certificate and organization certificate of the chain.

The folder named by IP address stores the certificate configuration file required by related configuration of
all nodes , fisco-bcos executable program, and SDK in the server.

e The node* folder under each IP folder stores configuration file required by the node. config. ini is the
main configuration of node. In conf directory, to store certificate files and group related configurations.
For the configuration detail, please refer to here. Each node provides two scripts which are used to start and
stop the node.

* Under each IP folder, two scripts providing start_all.sh and stop_all.sh are used to start and
stop all nodes.

nodes/

— 127.0.0.1

— fisco-bcos # binary program

— node0 # nodel folder

— conf # configuration folder

— ca.crt # chain root certificate

— group.l.genesis # the initialized configuration of groupl, the_
—~file cannot be changed

— group.l.ini # the configuration file of groupl

— node.crt # node certificate

— node.key # node private key

— node.nodeid # node id, represented by hexadecimal of public key
F— config.ini # node main configuration file, to configure listening IP,

—port, etc.
t:: start.sh # start script, uses for starting node

stop.sh # stop script, uses for stopping node
— nodel # nodel folder
— node2 # node2 folder
— node3 # node3 folder
— sdk # SDK needs to be used

ca.crt # chain root certificate

sdk.crt # The certificate file required by SKD, to use when_

—establishing a connection

| | — sdk.key # The private key file required by SKD, to use when,,

—establishing a connection

— cert # certificate folder

— agency # agency certificate folder
agency.crt # agency certificate
agency.key # agency private key
agency.srl
ca—agency.crt
ca.crt
cert.cnf

— ca.crt # chain certificate

— ca.key # chain private key

— ca.srl

— cert.cnf

5.4.5 Example

Four nodes of group 1 on a local server

To build a 4-node FISCO BCOS alliance chain on native machine for using the default start port 30300, 20200,
8545 (4 nodes will occupy 30300-30303,20200-20203,8545-8548) and listening to the external network

54 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

Channel and jsonrpc ports while allowing the external network interacts with node through SDK or APIL.

to build FISCO BCOS alliance chain

$ bash build_chain.sh -1 "127.0.0.1:4"

after generating successes, to output "All completed’ to mention
Generating CA key...

Generating keys
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1

Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1

[INFO] FISCO-BCOS Path : bin/fisco-bcos

[INFO] Start Port : 30300 20200 8545

[INFO] Server IP : 127.0.0.1:4

[INFO] State Type : storage

[INFO] RPC listen IP : 127.0.0.1

[INFO] Output Dir : /Users/fisco/WorkSpace/FISCO-BCOS/tools/nodes

[INFO] CA Key Path : /Users/fisco/WorkSpace/FISCO-BCOS/tools/nodes/cert/ca.
—key

[INFO] All completed. Files in /Users/fisco/WorkSpace/FISCO-BCOS/tools/nodes

Add new node into Groups
This section takes Groupl generated in the previous section as an example to add a consensus node.
Generate private key certificates for new node

The next operation is done under the nodes/127.0.0.1 directory generated in the previous section.

1. Acquisition certificate generation script

curl -LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master/tools/gen_
—node_cert.sh

Note:

e If the script cannot be downloaded for a long time due to network problems, try curl -LO
https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master/tools/gen_node_cert.sh

1. Generating new node private key certificates

—c specify the path where the certificate and private key are located
—o Output to the specified folder, where new certificates and private keys,_
—issued by agency agencyl exist in newNode/conf

bash gen_node_cert.sh -c ../cert/agency -o newNode

If you use guomi version of fisco, please execute below command to generate cert.

bash gen_node_cert.sh -c ../cert/agency -o newNodeGm -g ../gmcert/agency/

Preparing configuration files

1. Copy Node 0 Profile and Tool Script in Group 1

5.4. Chain building script 55

FISCO BCOS EN Documentation, Release v2.5.0

cp
cp
cp
cp
cp

nodeO/config.ini newNode/config.ini
nodeO/conf/group.l.genesis newNode/conf/group.l.genesis
node0/conf/group.l.ini newNode/conf/group.l.ini
node0/+*.sh newNode/

-r node0/scripts newNode/

1. Update IP and ports monitored in newNode/config. ini, include IP and Portin [rpc] and [p2p] -

2. Add IP and Port in the new node’s P2P configuration to the [p2p] field in the original node’s config.ini.
Assuming that the new node IP: Port is 127.0.0.1:30304, the modified [P2P] configuration is

[p2p]

jenable_compress=true

; nodes to connect
node.0=127.0.0.1:30300

node.1=127.0.0.1:30301
node.2=127.0.0.1:30302
node.3=127.0.0.1:30303
node.4=127.0.0.1:30304

3. Start node, use newNode/start.sh

4. Add new nodes to group 1 through console, refer to here and here

Start a new node, check links and consensus

Generating new agency private key certificates

1. Acquisition agency certificate generation script

curl -LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master/tools/gen_
—agency_cert.sh

1. Generating new agency private key certificates

—c path must have ca.crt and ca.key, 1f use intermediate ca, then root.crt 1is,
—needed
—-g path must have gmca.crt and gmca.key, 1if use intermediate ca, then gmroot.crt,

—15 needed

#

—a newAgencyName

bash gen_agency_cert.sh -c nodes/cert/ -a newAgencyName

[RRATE T TR <

bash gen_agency_cert.sh -c nodes/cert/ -a newAgencyName -g nodes/gmcert/

Multi-server and multi-group

Using the build_chain script to build a multi-server and multi-group FISCO BCOS alliance chain requires the
script configuration file. For details, please refer to here.

5.

5 Certificate description

FISCO BCOS network adopts a CA-oriented access mechanism to support any multi-level certificate structure for
ensuring information confidentiality, authentication, integrity, and non-repudiation.

56

Chapter 5. Manual (Revision in progress)

./console.html#addsealer
./node_management.html#id7

FISCO BCOS EN Documentation, Release v2.5.0

FISCO BCOS uses the x509 protocol certificate format. According to the existing business scenario, a three level
certificate structure is adopted by default, and from top to bottom, the three levels are chain certificate, agency
certificate, and node certificate respective.

In multi-group architecture, a chain has a chain certificate and a corresponding chain private key, and the chain
private key is jointly managed by alliance chain committee. Alliance chain committee can use the agency’s
certificate request file agency . csr to issue the agency certificate agency.crt.

Agency private key held by the agency administrator can issue node certificate to the agency’s subordinate nodes.

Node certificate is the credential of node identity and uses this certificate to establish an SSL connection with
other nodes for encrypted communication.

sdk certificate is a voucher for sdk communicating with node. Agency generates sdk certificate that allows sdk to
do that.

The files’ suffixes of FISCO BCOS node running are described as follows:
5.5.1 Role definition

There are four roles in the FISCO BCOS certificate structure, namely the alliance chain committee administrator,
agency, node, and SDK.

Alliance chain committee

* The alliance chain committee manages private key of chain, and issues agency certificate according to
agency’s certificate request document agency.csr.

ca.crt chain certificate
ca.key chain private key

When FISCO BCOS performs SSL encrypted communication, only the node with the same chain certificate ca .
crt can establish a connection.

Agency

* Agency has an agency private key that can issue node certificate and SDK certificate.

ca.crt chain certificate

agency.crt agency certificate

agency.csr agency certificate request file
agency.key agency private key

Node/SDK
* FISCO BCOS nodes include node certificates and private keys for establishing SSL encrypted connection
among nodes;

* SDK includes SDK certificate and private key for establishing SSL encrypted connection with blockchain
nodes.

ca.crt #chain certificate
node.crt #node certificate
node.key #node private key
sdk.crt #SDK certificate
sdk.key #SDK private key

Node certificate node . crt includes the node certificate and the agency certificate information. When the node
communicates with other nodes/SDKs, it will sign the message with its own private key node . key, and send its
own node . crt to nodes/SDKs to verify.

5.5. Certificate description 57

https://en.wikipedia.org/wiki/X.509

FISCO BCOS EN Documentation, Release v2.5.0

5.5.2 Certificate generation process

FISCO BCOS certificate generation process is as follows. Users can also use the Enterprise Deployment Tool to
generate corresponding certificate

Chain certificate generation

 Alliance chain committee uses openssl command to request chain private key ca . key, and generates chain
certificate ca . crt according to ca.key.

Agency certificate generation

* Agency uses openssl command to generate agency private key agency . key

» Agency uses private key agency.key to get agency certificate request file agency.csr, and sends
agency.csr to alliance chain committee.

* Alliance chain committee uses chain private key ca . key to generate the agency certificate agency.crt
according to the agency certificate request file agency.csr. And send agency certificate agency.crt
to corresponding agency.

Node/SDK certificate generation

* The node generates the private key node . key and the certificate request file node.csr. The agency
administrator uses the private key agency.key and the certificate request file node.csr to issue the
certificate to the node/SDK.

5.5.3 TODO
5.6 Configuration files and configuration items

FISCO BCOS supports multiple ledger. Each chain includes multiple unique ledgers, whose data among them are
isolated from each other. And the transaction processing among groups are also isolated. Each node includes a
main configuration config.ini and multiple ledger configurations group.group_id.genesis, group.
group_id.ini.

e config.ini: The main configuration file, mainly configures with RPC, P2P, SSL certificate, ledger
configuration file path, compatibility and other information.

* group.group_id.genesis: group configurations file. All nodes in the group are consistent. After
node launches, you cannot manually change the configuration including items like group consensus algo-
rithm, storage type, and maximum gas limit, etc.

* group.group_id.ini: group variable configuration file, including the transaction pool size, etc.. All
configuration changes are effective after node restarts.

5.6.1 Main configuration file config.ini

config.ini uses ini format. It mainly includes the configuration items like ** rpc, p2p, group, secure and
log **.

Important:
e The public IP addresses of the cloud host are virtual IP addresses. If lis-
ten_ip/jsonrpc_listen_ip/channel_listen_ip is filled in external network IP address, the binding fails.
You must fill in 0.0.0.0.

58 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

* RPC/P2P/Channel listening port must be in the range of 1024-65535 and cannot conflict with other appli-
cation listening ports on the machine.

* In order to facilitate development and experience, the reference configuration of listen_ip/channel_listen_ip
is 0.0.0.0. For security reasons, please modify it to a safe listening address according to the actual business
network situation, such as the internal IP or a specific external IP

Configure RPC

e channel_listen_ip: Channel listening IP, to facilitate node and SDK cross-machine deployment, the
default settingis 0.0.0.0;

* jsonrpc_listen_ip: RPC listening IP, security considerations, the default setting is 127.0.0.1, if
there is an external network access requirement, please monitor node external network IP or 0.0.0.
03

e channel_listen_port: Channel port, is corresponding to channel_listen_port in Web3SDK
configuration;

* jsonrpc_listen_port: JSON-RPC port.

Note: For security and ease of use consideration, the latest configuration of v2.3.0 version splits listen_ip into
jsonrpc_listen_ip and channel_listen_ip, but still retains the parsing function of listen_ip:

¢ Include only listen_ip in the configuration: The listening IPs of both RPC and Channel are configured
listen_ip

* The configuration also contains listen_ip, channel_listen_ip, or jsonrpc_listen_ip: Priority is given to chan-
nel_listen_ip and jsonrpc_listen_ip. Configuration items that are not configured are replaced with the value
of listen_ip

RPC configuration example is as follows:

[rpecl
channel_listen_ip=0.0.0.0
jsonrpc_listen_ip=127.0.0.1
channel_listen_port=30301
jsonrpc_listen_port=30302

Configure P2P

Note: In order to facilitate development and experience, the reference configuration of listen_ip is 0.0.0.0. For
security reasons, please modify it to a safe listening address according to the actual business network situation,
such as the internal IP or a specific external IP.

The current version of FISCO BCOS must be configured with IP and Port of the connection node in the
config.ini configuration. The P2P related configurations include:

e listen_ip: P2P listens for IP, to set 0. 0.0 .0 by default.
e listen_port: Node P2P listening port.

* node. *: Allnodes’ IP:Port or DomainName : Port which need to be connected to node. This option
supports domain names, but suggests users who need to use it manually compile source code.

* enable_compress: Enable network compression configuration option. Configuring to true, indicates
that network compression is enabled. Configuring to false, indicates that network compression is disabled.
For details on network compression, please refer to [here](../design/features/network_compress .md).

5.6. Configuration files and configuration items 59

../sdk/sdk.html#id2
https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/manual/get_executable.html#id2

FISCO BCOS EN Documentation, Release v2.5.0

P2P configuration example is as follows:

[p2p]
listen_ip=0.0.0.0
listen_port=30300
node.0=127.0.0.1:30300

node.1=127.0.0.1:30304
node.2=127.0.0.1:30308
node.3=127.0.0.1:30312

Configure ledger file path

[group] To configure all group configuration paths which this node belongs:
* group_data_path: Group data storage path.
e group_config_path: Group configuration file path.

Node launches group according to all . genesis suffix files in the group_config_path path.

[group]
; All group data is placed in the node's data subdirectory
group_data_path=data/
; Program automatically loads all .genesis files in the path
group_config_path=conf/

Configure certificate information
For security reasons, communication among FISCO BCOS nodes uses SSL encrypted communica-
tion. [network_security] configure to SSL connection certificate information:

* data_path: Directory where the certificate and private key file are located.

* key: The data_path path that node private key relative to.

e cert: The data_path path that certificate node . crt relative to.

* ca_cert: ca certificate file path.

* ca_path: ca certificate folder, required for multiple ca.

e check_cert_issuer: sets whether the SDK can only connect the nodes with same organization, which
is turned on by default (check_cert_issuer=true)

[network_security]
data_path=conf/
key=node.key
cert=node.crt
ca_cert=ca.crt
;ca_path=

Configure blacklist
For preventing vice, FISCO BCOS allows nodes to configure untrusted node blacklist to reject establishing con-
nections with these blacklist nodes. To configure blacklist through [crl]:

crl.idx: Blacklist node’s Node ID, can get from node . nodeid file; 1dx is index of the blacklist
node.

For details of the blacklist, refer to [CA Blacklist].(./certificate_list.md)

Blacklist configuration example is as follows:

60 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

; certificate blacklist
[erl]

crl.
—0=4d9752efbbl1del1253d1d463a934d34230398e787b3112805728525ed5b9d2ba29%e4ad92c6fcde515¢pede8baabaca3l
3787c338a4

Configure log information

FISCO BCOS supports boostlog. The log configuration is mainly located in the [log] configuration item of
config.ini.

Log common configuration items

FISCO BCOS general log configuration items are as follows:

* enable: Enable/disable log. Set to true to enable log; set to false to disable log. set to true by
default. For performance test, to set this option to false to reduce the impact of print log on test
results

* log_path:log file patch.

* level: loglevel, currently includes 5 levels which are t race ~ debug~ info~ warning- error.After
setting a certain log level, the log file will be entered with a log equal to or larger than this level.The log
level is sorted from large to small by error > warning > info > debug > trace.

* max_log_file_size: Maximum size per log file, ** unit of measure is bytes, default is 200MB**

e flush: boostlog enables log auto-refresh by default. To improves system performance, it is recommended
to set this value to false.

boostlog configuration example is as follows:

[1og]
; whether to enable log, set to true by default
enable=true
log_path=./log
level=info
; Maximum size per log file, default is 200MB
max_log_file_size=200
flush=true

Statistics log configuration items

Considering that the real-time monitoring system resource usage is very important in the actual production system,
FISCO BCOS v2.4.0 introduced statistical logs, and the statistical log configuration items are located in config.
ini.

Statistics log enable/disable configuration item

Considering that not all scenarios require network traffic and Gas statistics functions, FISCO BCOS provides the
enable_statistic optioninconfig.ini to turn on and off the function, which is turned off by default.

* log.enable_statistic is setto true to enable network traffic and gas statistics
* log.enable_statistic is setto false to disable network traffic and gas statistics

The configuration example is as follows:

5.6. Configuration files and configuration items 61

https://www.boost.org/doc/libs/1_63_0/libs/log/doc/html/index.html

FISCO BCOS EN Documentation, Release v2.5.0

[log]
; enable/disable the statistics function
enable_statistic=false

Network statistics log output interval configuration item

Due to the periodic output of network statistics logs, log.stat_flush_interval is introduced to control
the statistics interval and log output frequency, the unit is seconds, and the default is 60s. The configuration
example is as follows:

[log]
; network statistics interval, unit is second, default is 60s

stat_flush_interval=60

Configure chain attributes
Users can configure attributes of chain through [chain] in config.ini. The tool will be automatically
generated when changing the configuration item to build chain, so users do not need to change it.

e id, the ID of chain, 1 by default;

e sm_crypto, in2.5.0 and follow-up versions of FISCO BCOS, node can be launched in SM-Crypto mode
or not through this configuration. t rue means SM-Crypto mode will be used and false means opposite,
false by default;

* sm_crypto_channel, in2.5.0 and follow-up versions of FISCO BCOS, connection between SDK and
node can be established via SM-SSL. This configuration is used to indicate wheather to use this feature,
false by default-

Configure node compatibility

All versions of FISCO BCOS 2.0+ are forward compatible. You can configure the compatibility of node through
[compatibility] in config.ini. The tool will be automatically generated when changing the configura-
tion item to build chain, so users do not need to change it.

* supported_version: The version of the current node running

Important:

* view the latest version of FISCO BCOS currently supports through the command °./fisco-bcos —version |
grep “Version”

* In the blockchain node configuration generated by build_chain.sh, supported_version is configured to the
current latest version of FISCO BCOS

e When upgrading an old node to a new node, directly replace the old FISCO BCOS binary with the latest
FISCO BCOS binary, don’t modify supported_version

FISCO BCOS 2.2.0node’s [compatibility] configuration is as follows:

[compatibility]
supported_version=2.2.0

62 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

Optional configuration: Disk encryption
In order to protect node data, FISCO BCOS introduces Disk Encryption to ensure confidentiality. Disk Encryp-
tion Operation Manual Reference.

storage_securityin config.ini is used to configure disk encryption. It mainly includes (for the opera-
tion of the disk encryption, please refer to Operation Manual):

* enable: whether to launch disk encryption, not to launch by default;
* key_manager_ip: Key Managerservice’s deployment IP;
e key_manager_port: Key Managerservice’s listening port;

e cipher_data_key: ciphertext of node data encryption key. For cipher_data_key generation, refer
to disk encryption operation manual.

disk encryption configuration example is as follows:

[storage_security]

enable=true

key_manager_ip=127.0.0.1

key_manager_port=31443
cipher_data_key=edl157£f4588b86d6la2el745efe7lebea

Optional configuration: flow control

In order to realize the flexible service of the blockchain system and prevent the mutual influence of resources
between multiple groups, FISCO BCOS v2.5.0 introduces a flow control function, mainly including the request
rate limit from SDK to nodes and the flow limit between nodes. Under [flow_control] of config.ini,it
is disabled by default. For detailed design of flow control, please refer to here

SDK request rate limit configuration

The SDK request rate limit is located in the configuration item [flow_control].limit_req, which is used
to limit the maximum number of requests from the SDK to the node per second. When the request to the node
per second exceeds the value of the configuration item, the request will be rejected. The rate limit is disabled
by default. To enable this function, you need to remove the ; in front of the 1imit_req configuration item.
Enable the SDK request rate limit and design a node that can accept 2000 SDK requests per second as follows:

[flow_control]
; restrict QPS of the node
limit_reg=2000

Inter-node traffic limit configuration

In order to prevent block sync and AMOP message transmission from occupying too much network traffic and
affecting the transmission of message packets of the consensus module, FISCO BCOS v2.5.0 introduces the
function of inter-node traffic restriction. This configuration item is used to configure the average bandwidth of the
node, but does not limit the flow of block consensus and transaction sync. When the average bandwidth of the
node exceeds the configured value, block sync and AMOP message transmission will be paused.

e [flow_control].outgoing_bandwidth_limit: Node output bandwidth limit, the unit is
Mbit /s, When the node output bandwidth exceeds this value, block sync will be paused, and the[AMOP](./
amop_protocol.md) request sent by the client will be rejected, but It will not limit the traffic of block consen-
sus and transaction broadcast. This configuration item is disabled by default. To enable the traffic limit
function, please remove the ; in front of the outgoing_bandwidth_1limit configuration item.

The configuration example of enable the outgoing bandwidth traffic limit of the node and setting it to 5SMBit /s
is as follows:

5.6. Configuration files and configuration items 63

https://github.com/FISCO-BCOS/key-manager
https://github.com/FISCO-BCOS/key-manager

FISCO BCOS EN Documentation, Release v2.5.0

[flow_control]

; Mb, can be a decimal

; when the outgoing bandwidth exceeds the limit, the block synchronization,,
—operation will not proceed

outgoing_bandwidth_limit=5

5.6.2 Group system configuration instruction

Each group has unique separate configuration file, which can be divided into group system configuration and
group variable configuration according to whether it can be changed after launch. group system configuration
is generally located in the . genesis suffix configuration file in node’s conf directory.

For example:group1 system configuration generally names as group.1.genesis. Group system configura-
tion mainly includes the related configuration of group ID -~ consensus, storage and gas.

Important: When configuring the system configuration, you need to pay attention to:

* configuration group must be consistent: group system configuration is used to generate the genesis block
(block 0), so the configurations of all nodes in the group must be consistent.

* node cannot be modified after launching : system configuration has been written to the system table as
genesis block, so it cannot be modified after chain initializes.

¢ After chain is initialized, even if genesis configuration is modified, new configuration will not take effect,
and system still uses the genesis configuration when initializing the chain.

 Since genesis configuration requires all nodes in the group to be consistent, it is recommended to use
build_chain to generate the configuration.

Group configuration

[group] configures group ID. Node initializes the group according to the group ID.

group2’s configuration example is as follows:

[group]
id=2

Consensus configuration

[consensus] involves consensus-related configuration, including:

* consensus_type: consensus algorithm type, currently supports PBFT, Raft and rPBFT. To use PBFT
by default;

* max_trans_num: amaximum number of transactions that can be packed in a block. The default is 1000.
After the chain is initialized, the parameter can be dynamically adjusted through Console;

* node.idx: consensus node list, has configured with the [Node ID] of the participating consensus nodes.
The Node ID can be obtained by the $ {data_path}/node.nodeid file (where $ {data_path} can
be obtained by the configuration item [secure] .data_path of the main configuration config.ini)

FISCO BCOS v2.3.0 introduced the rPBFT consensus algorithm, The rPBFT related configuration is as follows:

e epoch_sealer_num: The number of nodes participating in the consensus is selected in a consensus
period. The default is the total number of all consensus nodes. After the chain is initialized, this parameter
can be dynamically adjusted through [Console] (./console.html#setsystemconfigbykey)

e epoch_block_num: The number of blocks generated in a consensus period, the default is 1000, which
can be dynamically adjusted through [Console] (./console.html#setsystemconfigbykey)

64 Chapter 5. Manual (Revision in progress)

build_chain.html
./console.html#setsystemconfigbykey

FISCO BCOS EN Documentation, Release v2.5.0

Note: rPBFT configuration does not take effect on other consensus algorithms

; Consensus protocol configuration
[consensus]

;consensus algorithm, currently supports PBFT (consensus_type=pbft) and_
—Raft (consensus_type=raft)

consensus_type=pbft

; maximum number of transactions in a block

max_trans_num=1000

epoch_sealer_num=4

epoch_block_num=1000

; leader node's ID lists

node.
—0=123d24a998b54b31£7602972b83d899b5176add03369395e53a5f60c303acb719%ec0718efled51fe
e01789233a

node.

7e9cf4836£26

—1=70ee8ed4bf85eccda952%9a8dat5689410£f£f771ec72£c4322c431d67689%efbd6fbd474cb7dc7435£63Fa592b98£22b1

3494db8776
node.
—2=7a056eb6l11a43bae685efd86d4841bcbbaefafbf20d8c8f6028031d67af27¢c36c5767¢c9¢c79cff201
922aa0ef50
node.
—3=fd6e0bfe509078e273c0b3e23639374£0552b512c2bealb2d3743012b7fed8a9%dec7b4d7¢c57090fa6
4a5aed2bda

7169ed80££220b

cc5341922¢32]

State mode configuration

state is used to store blockchain status information. It locates in the genesis file [state]:

* type: state type, currently supports storage state and MPT state, defaults to Storage state. storage state
storing the transaction execution result in the system table, which is more efficient. MPT state storing the
transaction execution result in the MPT tree, which is inefficient but contains complete historical informa-
tion.

Important: The storage state is recommended.

[state]
type=storage

Gas configuration

FISCO BCOS is compatible with Ethereum virtual machine (EVM). In order to prevent DOS from attacking
EVM, EVM introduces the concept of gas when executing transactions, which is used to measure the computing
and storage resources consumed during the execution of smart contracts. The measure includes the maximum gas
limit of transaction and block. If the gas consumed by the transaction or block execution exceeds the gas limit, the
transaction or block is discarded.

FISCO BCOS is alliance chain that simplifies gas design. It retains only maximum gas limit of transaction, and
maximum gas of block is constrained together by consensus configuration max_trans_num and transaction
maximum gas limit.

FISCO BCOS configures maximum gas limit of the transaction through genesis [tx] .gas_1limit. The default
value is 300000000. After chain is initialized, the gas limit can be dynamically adjusted through the console
command.

5.6. Configuration files and configuration items 65

../design/storage/mpt.html
../design/storage/storage.html#id6
../design/storage/mpt.html
./configs.html#id8
./console.html#setsystemconfigbykey
./console.html#setsystemconfigbykey

FISCO BCOS EN Documentation, Release v2.5.0

[tx]
gas_1imit=300000000

EVM configuration

FISCO BCOS v2.4.0 introduces the Free Storage Gas measurement mode to increase the proportion of CPU
and memory in Gas consumption. For details, please refer to [here] (../design/virtual_machine/gas.html#evm-gas)
The opening and closing of Free Storage Gas mode is controlled by the evm.enable_free_storage
configuration item in the genesis file.

Note:

* evm.enable_free_storage is supported in v2.4.0. This feature is not supported when
supported_version is less than v2.4.0, or the old chain directly replaces binary upgrade

e When the chain is initialized, evm.enable_free_storage is written to the genesis block; after the
chain is initialized, the node reads the evm.enable_free_storage configuration item from the gene-
sis block, manually modifying the genesis configuration item will not take effect

* evm.enable_free_storage is set to false by default

e evm.enable_free_storage is set to true: enable Free Storage Gas mode
e evin.enable_free_storage is set to false: turn off Free Storage Gas mode

The configuration example is as follows:

[evm]
enable_free_storage=false

5.6.3 Ledger variable configuration instruction

Variable configuration of the ledger is located in the file of the . ini suffix in the node conf directory.

For example: group1l variable configuration is generally named group. 1. ini. Variable configuration mainly
includes transaction pool size, PBFT consensus message forwarding TTL, PBFT consensus packing time setting,
PBFT transaction packaging dynamic adjustment setting, parallel transaction settings, etc..

Configure storage

Storage currently supports three modes: RocksDB, MySQL, and External. Users can choose the DB to use
according to their needs. RocksDB has the highest performance. MySQL supports users to use MySQL database
for viewing data. External accesses mysql through data proxy, and users need to start and configure the data
proxy. The design documentation can be referenced AMDB Storage Design. Since the RC3 version, we have
used RocksDB instead of LevelDB for better performance, but still supports LevelDB.

Note:

e Starting from v2.3.0, in order to facilitate chain maintenance, it is recommended to use MySQL storage
mode instead of* External‘ storage mode

* To use External, configure‘ supported_version‘ to v2.2.0 or below

66 Chapter 5. Manual (Revision in progress)

../design/storage/storage.html

FISCO BCOS EN Documentation, Release v2.5.0

Public configuration item

Important: If you want to use MySQL, please set type to MySQL.

e type: The stored DB type, which supports RocksDB, MySQL and External. When the DB type
is RocksDB, all the data of blockchain system is stored in the RocksDB local database; when the type
is MySQL or External, the node accesses mysql database according to the configuration. All data of
blockchain system is stored in mysql database. For accessing mysql database, to configure the amdb-proxy.
Please refer to here for the amdb-proxy configuration.

* max_capacity: configures the space size of the node that is allowed to use for memory caching.

* max_forward_block: configures the space size of the node that allowed to use for memory block.
When the blocks exceeds this value, the node stops the consensus and waits for the blocks to be written to
database.

* binary_log: default is false. when set to t rue, enable binary log, and then disable the wal of rocksdb.

* cached_storage: controls whether to use the cache. The default is t rue.

Database related configuration item

e topic: When the type is External, you need to configure this field to indicate the amdb-proxy topic
that blockchain system is interested in. For details, please refer to here.

* max_retry: When the type is External, you need to configure this field to indicate the number of
retries when writing fails. For details, please refer to here.

e scroll_threshold _multiple: when the type is scalable, this configuration item is used to
configure the handover threshold of the block database. The default value is 2, so Block data is stored in
different rocksdb instances every 2000 blocks.

e db_ip: When the type is My SQL, you need to configure this field to indicate the IP address of MySQL.
* db_port: When the type is My SQL, you need to configure this field to indicate the port number of MySQL.

e db_username: When the type is MySQL, you need to configure this field to indicate the MySQL user-
name.

e db_passwd: When the type is My SQL, you need to configure this field to indicate the password corre-
sponding to the MySQL user.

e db_name: When the type is My SQL, you need to configure this field to indicate the database name used in
MySQL.

* init_connections: When the type is My SQL, this field can be optionally configured to indicate the
initial number of connections established with MySQL. The default value is 15, and it is fine to use it.

* max_connections: When the type is MySQL, this field can be optionally configured to indicate the
maximum number of connections established with MySQL. The default value is 20, and it is fine to use it.

The following is an example of the configuration of [storage]:

[storage]
; storage db type, rocksdb / mysql / external, rocksdb is recommended
type=RocksDB
max_capacity=256
max_forward_block=10
; only for external
max_retry=100

(continues on next page)

5.6. Configuration files and configuration items 67

./distributed_storage.html#amdb
./distributed_storage.html#id3
./distributed_storage.html#id3

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

topic=DB

; only for mysqgl
db_ip=127.0.0.1
db_port=3306
db_username=
db_passwd=
db_name=

Transaction pool configuration

FISCO BCOS opens the transaction pool capacity configuration to users. Users can dynamically adjust the trans-
action pool according to their business size requirements, stability requirements, and node hardware configuration.

Transaction pool capacity limit

In order to prevent excessive accumulating transactions occupy too much memory, FISCO BCOS provides two
configuration items [tx_pool].limit and[tx_pool] .memory_limit to limit the transaction pool ca-
pacity:

e [tx_pool].limit: limit the maximum number of transactions that can be accommodated in the trans-
action pool. The default is 150000, after the limit is exceeded, transactions sent by the client to the node
will be rejected

* [tx_pool] .memory_limit: The memory size limit of transactions in the transaction pool, the default
is 512MB, after this limit is exceeded, the transaction sent by the client to the node will be rejected

The transaction pool capacity is configured as follows:

[tx_pool]
1limit=150000
; transaction pool memory size limit, MB
memory_limit=512

Transaction pool push thread number configuration

In order to improve the performance of the blockchain system, FISCO BCOS uses the asynchronous push logic of
transaction receipts. When the transaction is chained, the push thread in the transaction pool will asynchronously
push the receipt of the transaction on the chain to the client. More system resources, and in order to prevent
too few push threads from affecting the timeliness of transaction push, FISCO BCOS provides [tx_pool].
notify_worker_num configuration item to configure the number of asynchronous push threads:

* [tx_pool].notify_worker_num: Number of asynchronous push threads, the default is 2, it is rec-
ommended that the value does not exceed 8

The number of push threads in the transaction pool is configured as follows:

[tx_pool]
; number of threads responsible for transaction notification,
; default is 2, not recommended for more than 8
notify_worker_num=2

PBFT consensus configurations

In order to improve the performance, availability, and network efficiency of the PBFT algorithm, FISCO BCOS
has made a series of optimizations for block packaging algorithms and networks, including PBFT block packag-

68 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

ing dynamic adjustment strategies, PBFT message forwarding optimization, and PBFT Prepare packet structure
optimization.

Note: Due to protocol and algorithm consistency requirements, it is recommended to ensure that the PBFT
consensus configuration of all nodes is consistent.

PBFT consensus message broadcast configuration

In order to ensure the maximum network fault tolerance of the consensus process, each consensus node broadcasts
the message to other nodes after receiving a valid consensus message. In smooth network environment, the
consensus message forwarding mechanism will waste additional network bandwidth, so the tt1 is introduced in
the group variable configuration item to control the maximum number of message forwarding. The maximum
number of message forwarding is tt 1-1, and the configuration item is valid only for PBFT.

Setting consensus message to be forwarded at most once configuration example is as follows:

; the ttl for broadcasting pbft message
[consensus]
ttl=2

PBFT consensus packing time configuration

The PBFT module packing too fast causes only 1 to 2 transactions to be pack in some blocks. For avoid-
ing wasting storage space, FISCO BCOS v2.0.0-rc2 introduces min_block_generation_time configu-
ration item in the group variable configuration group.group_id.ini’s [consensus] to manager the
minimum time for PBFT consensus packing. That is, when the consensus node packing time exceeds
min_block_generation_time and the number of packaged transactions is greater than 0, the consensus
process will start and handle the new block generated by the package.

Important:
* min_block_generation_time is 500ms by default

* The longest packing time of consensus node is 1000ms. If the time is exceeded 1000ms and the number
of transactions packed in the new block is still 0, the consensus module will enter the logic of empty block
generation, and the empty block will not be written to disk;

* min_block_generation_time cannot exceed the time of empty block generation which is 1000ms.
If the set value exceeds 1000ms, the system defaults min_block_generation_time to be 500ms.

[consensus]
;min block generation time (ms), the max block generation time is 1000 ms
min_block_generation_time=500

PBFT transaction package dynamic adjustment

For the impact causing by CPU loading and network latency on system processing power, PBFT provides
an algorithm that dynamically adjusts the maximum number of transactions that can be packed in a block.
The algorithm dynamically can adjust the maximum number of transactions according to the state of his-
torical transaction processing. The algorithm is turned on by default, and it can be turned off by chang-
ing the [consensus] .enable_dynamic_block_size configuration item of the variable configuration
group.group_id.ini to false. At this time, the maximum number of transactions in the block is the
[consensus] .max_trans_numof group.group_id.genesis.

5.6. Configuration files and configuration items 69

FISCO BCOS EN Documentation, Release v2.5.0

The configuration of closing the dynamic adjustment algorithm for the block package transaction number is as
follows:

[consensus]
enable_dynamic_block_size=false

PBFT message forwarding configuration

FISCO BCOS v2.2.0 optimizes the PBFT message forwarding mechanism to ensure that PBFT message packets
can reach each consensus node as much as possible in the network disconnection scenario, while reducing re-
dundant PBFT message packets in the network. For PBFT message forwarding optimization strategies. You can
use the [consensus].enable_ttl_optimization configuration item of group.group_id.ini to
enable or disable the PBFT message forwarding optimization strategy.

* [consensus] .enable_ttl_optimization is configured as true: Enable PBFT message for-
warding optimization strategy

* [consensus] .enable_ttl_optimization is configured as false: Disable PBFT message for-
warding optimization strategy

* When supported_version is not less than v2.2.0, the PBFT message forwarding strategy is enabled
by default; whensupported_version is less than v2.2.0, the PBFT message forwarding optimization
strategy is disabled by default

Disable PBFT message forwarding optimization strategy configuration as follows:

[consensus]
enable_ttl_optimization=false

PBFT Prepare package structure optimization

Considering that in the PBFT algorithm, transactions in blocks in the Prepare packet broadcast by the Leader
have a high probability of hitting in the transaction pools of other consensus nodes. In order to save network
bandwidth, FISCO BCOS v2.2.0 has optimized the Prepare packet structure: The block only contains a list of
transaction hashes. After other consensus nodes receive the Prepare packet, they will first obtain the hit transaction
from the local transaction pool and request the missing transaction from Leader. This policy can be enabled or
disabled through the [consensus].enable_prepare_with_txsHash configuration item of group.
group_id.ini.

* [consensus] .enable_prepare_with_txsHashisconfigured as t rue: Enable the structure op-
timization of the Prepare package. The blocks in the Prepare message package only contain the transaction
hash list.

* [consensus] .enable_prepare_with_txsHash is configured as false: Disable the structure
optimization of the Prepare packet, the block in the Prepare message packet contains the full amount of
transactions

* When supported_version is not less than v2.2.0,[consensus] .
enable_prepare_with_txsHash defaults to true; when supported_version is less
than v2.2.0, [consensus] .enable_prepare_with_txsHash defaults to false

Note: Due to protocol consistency requirements, all nodes must ensure enable_prepare_with_txsHash configu-
ration is consistent

Disable the PBFT Prepare package structure optimization configuration as follows:

[consensus]
enable_prepare_with_txsHash=false

70 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

rPBFT consensus configurations

FISCO BCOS v2.3.0 introduces the rPBFT consensus algorithm. In order to ensure the load balance of the network
traffic of the rPBFT algorithm, the tree broadcast policy of the Prepare packet is introduced, Corresponding fault
tolerance scheme.

* [consensus] .broadcast_prepare_by_tree: Enable/disable switch for Prepare tree broadcast
policy. Set to t rue to enable the tree broadcast policy for Prepare packets. Set tofalse to disable the tree
broadcast policy for Prepare packets. Default is t rue.

The following is the fault-tolerant configuration after the Prepare packet tree broadcast policy is enabled:

* [consensus] .prepare_status_broadcast_percent: The percentage of the randomly se-
lected nodes that receive the prepare status, The value ranges from 25 to 100, and the default is 33.

* [consensus] .max_request_prepare_waitTime: When the node’s Prepare cache is missing,
the longest delay for waiting for the parent node to send a Prepare packet is 100ms by default. After this
delay, the node will request from other nodes that own the Prepare packet.

The following is the configuration of load balancing after enabling Prepare package structure optimization in
rPBFT mode:

* [consensus] .max_request_missedTxs_waitTime: After the transaction in the node’s Prepare
packet is missing, the longest delay for waiting for the parent node or other non-leader node to synchronize
the Prepare packet status is 100ms by default, if the packet status is synchronized to the parent node or
non-leader node within the waiting delay window, a random node will be selected to request the missing
transaction, otherwise, directly request the missing transaction from the leader.

rPBFT default configuration is as follows:

; Tree broadcast policy for Prepare packets 1is enabled by default
broadcast_prepare_by_tree=true

; Only effective when the prepare package tree broadcast is enabled
; Each node randomly selects 33% consensus nodes to synchronize the prepare packet,,
—status

prepare_status_broadcast_percent=33

; Under the prepare package tree broadcast strategy,

; the node missing the prepare package takes more than 100ms and

; does not wait for the prepare package forwarded by the parent node
; to request the missing prepare package from other nodes.
max_request_prepare_waitTime=100

; The maximum delay for a node to wait for a parent node

;or other non-leader node to synchronize a prepare packet 1is 100ms
max_request_missedTxs_waitTime=100

Sync configurations

The synchronization module is a “big network consumer”, including block synchronization and transaction syn-
chronization. FISCO BCOS optimizes the efficiency of the consensus module network using the principle of load
balancing.

Note: Due to protocol consistency requirements, it is recommended to ensure that the PBFT consensus configu-
ration of all nodes is consistent.

Block synchronization optimization configuration

In order to enhance the scalability of the blockchain system under the condition of limited network bandwidth,
FISCO BCOS v2.2.0 has optimized block synchronization. For detailed optimization strategies. You can use the

5.6. Configuration files and configuration items 71

FISCO BCOS EN Documentation, Release v2.5.0

[sync].sync_block_by_treeofgroup.group_id. ini toenable or disable the block synchronization
optimization strategy.

* [sync].sync_block_by_tree is configured as true:Enable block synchronization optimization
Strategy

* [sync].sync_block_by_treeisconfigured as false: Turn off block synchronization optimization
strategy

e When supported_version is not less than v2.2.0, [sync].sync_block_by_tree defaults to
true; when supported_version isless than v2.2.0,[sync] . sync_block_by_tree defaults to
false

In addition, in order to ensure the robustness of tree topology block synchronization, FISCO BCOS v2.2.0 also
introduced the gossip protocol to periodically synchronize the block status. The related configuration items of the
gossip protocol are located in [sync] of group.group_id. ini The details are as follows:

* gossip_interval_ms: gossip protocol synchronization block status period, default is 1000ms

* gossip_peers_number: Each time a node synchronizes the block status, the number of randomly
selected neighbor nodes, the default is 3

Note:
1. gossip protocol configuration item, only effective when block tree broadcast optimization is enabled

2. Must ensure that all nodes sync_block_by_tree configuration is consistent

The optimized configuration of enabling block tree broadcasting is as follows:

[sync]
; Block tree synchronization strategy 1is enabled by default
sync_block_by_tree=true
; Every node synchronizes the latest block status every 1000ms
gossip_interval_ms=1000
; Each node randomly selects 3 neighbor nodes at a time to synchronize the,
—latest block status
gossip_peers_number=3

Optimal configuration of transaction tree broadcast

In order to reduce the peak outbound bandwidth of SDK directly connected nodes and improve the scalability of
the blockchain system, FISCO BCOS v2.2.0 introduced a transaction tree broadcast optimization strategy. You
can use the [sync] .send_txs_by_tree of group.group_id. ini to enable or disable the transaction
tree broadcast strategy. The detailed configuration is as follows:

* [sync].sync_block_by_tree: Set to true to enable transaction tree broadcast strategy; set
tofalse to disable transaction tree broadcast strategy

The configuration of the disabled transaction tree broadcast policy is as follows:

[sync]
; Transaction tree broadcast strategy is enabled by default
send_txs_by_tree=false

Note:

e Due to protocol consistency requirements, all nodes must ensure that the tree broadcast switch
send_txs_by_tree is configured consistently

72 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

* When supported_version is not less than v2.2.0, the transaction tree broadcast optimization strategy is turned
on by default; when supported_version is less than v2.2.0, the transaction tree broadcast strategy is turned
off by default

Optimized transaction forwarding configuration

In order to reduce the traffic overhead caused by transaction forwarding, FISCO BCOS v2.2.0 introduced a state
packet-based transaction forwarding strategy. You can configure the maximum number of forwarding nodes for
the transaction status through [sync] .txs_max_gossip_peers_numof group.group_id.ini.

Note: To ensure that transactions reach each node and minimize the traffic overhead introduced by transaction
status forwarding, it is not recommended to set txs_max_gossip_peers_num too small or too large, just use the
default configuration

The maximum number of nodes for transaction status forwarding is configured as follows:

[sync]

; Each node randomly selects up to 5 neighbor nodes to synchronize the latest,,
—transaction status.

txs_max_gossip_peers_num=5

Parallel transaction configuration

FISCO BCOS supports execution of transactions in parallel. Turning on the transaction parallel execution switch
to enable for improving throughput. Execution of the transaction in parallel is only effective in the storage
state mode.

Note:

In order to simplify system configuration, v2.3.0 removes the enable_parallel configuration item, which only takes effect whe

» storageState mode: enable parallel transaction

» mptState mode: disable parallel transactions

[tx_execute]
enable_parallel=true

Optional configuration: group flow control

In order to prevent the mutual influence of resources between multiple groups, FISCO BCOS v2.5.0 intro-
duces a flow control function, which supports group-level SDK request rate limit and flow limit, Configure
[flow_control] located in group. {Group_id}.ini, disabled by default, For detailed design of flow
control, please refer to here.

SDK to group request rate limit configuration

The SDK request rate limit within the group is located in the configuration item [flow_control]

limit_req, Used to limit the maximum number of SDK requests to the group per second, when the request
to the node per second exceeds the value of the configuration item, the request will be rejected, SDK to group
request rate limit is disabled by default, to enable this function, you need to remove the ; in front of the

5.6. Configuration files and configuration items 73

FISCO BCOS EN Documentation, Release v2.5.0

limit_req configuration item, An example of enable the SDK request rate limit and configuring the group to
accept 1000 SDK requests per second is as follows:

[flow_control]
; restrict QPS of the group
limit_reg=1000

Traffic limit configuration between groups

In order to prevent block sync from occupying too much network traffic and affecting the message packet trans-
mission of the consensus module, FISCO BCOS v2.5.0 introduces group-level traffic limit, which configures the
upper limit of the average bandwidth of the group, but does not limit the block consensus and transaction sync,
when the average bandwidth of the group exceeds the configured value, the block transmission will be suspended.

e [flow_control].outgoing_bandwidth_limit: Group output bandwidth limit, the unit is
Mbit /s, when the group output bandwidth exceeds this value, it will suspend sending blocks, but will
not limit the block consensus and transaction broadcast traffic, this configuration item is disabled by de-
fault, to enable the traffic limit function, remove the ; before the outgoing bandwidth_limit
configuration item.

The configuration example of enable the group outbound traffic limit and setting it to 2MBit /s is as follows:

[flow_control]

; Mb, can be a decimal

; when the outgoing bandwidth exceeds the limit, the block synchronization_,
—operation will not proceed

outgoing_bandwidth_limit=2

5.6.4 Dynamically configure system parameters
FISCO BCOS system currently includes the following system parameters (other system parameters will be ex-
tended in the future):

Console provides setSystemConfigByKey command to modify these system parameters. getSystemConfig-
ByKey command can view the current value of the system parameter:

Important: It is not recommended to modify tx_count_limit and tx_gas_limit arbitrarily. These parameters can
be modified as follows:

* Hardware performance such as machine network or CPU is limited: to reduce tx_count_limit for reducing
business pressure;

* gas is insufficient when executing transactions for comlicated business logic: increase tx_gas_limit.

rpbft_epoch_sealer_num and rpbft_epoch_block_num are only valid for the rPBFT consensus algorithm. In or-
der to ensure the performance of the consensus, it is not recommended to frequently switch the consensus list
dynamically, that is, it is not recommended that the rpbft_epoch_block_num configuration value is too small

To set the maximum number of transactions of a packaged block to 500

> setSystemConfigByKey tx_count_limit 500
inquiry tx_count_limit

> getSystemConfigByKey tx_count_limit
[500]

To set transaction gas limit as 400000000
> setSystemConfigByKey tx_gas_limit 400000000
> getSystemConfigByKey tx_gas_limit

(continues on next page)

74 Chapter 5. Manual (Revision in progress)

./console.html#setsystemconfigbykey
./console.html#getsystemconfigbykey
./console.html#getsystemconfigbykey

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

(4000000001

Under the rPBFT consensus algorithm, set a consensus period to select the number,
—of nodes participating in the consensus to 4
[group:1]> setSystemConfigByKey rpbft_epoch_sealer_ num 4
Note: rpbft_epoch_sealer_num only takes effect when rPBFT is used
{
"code":0,
"msg":"success"
}
query rpbft_epoch_sealer_num
[group:1]> getSystemConfigByKey rpbft_epoch_sealer_ num
Note: rpbft_epoch_sealer_num only takes effect when rPBFT is used
4

Under the rPBFT consensus algorithm, set a consensus period to produce 10,000,
—blocks

[group:1]> setSystemConfigByKey rpbft_epoch_block_num 10000

Note: rpbft_epoch_block_num only takes effect when rPBFT is used

{

"code":0,

" n

msg" :"success"

}

query rpbft_epoch _block_num

[group:1]> getSystemConfigByKey rpbft_epoch_block_num

Note: rpbft_epoch_block_num only takes effect when rPBFT is used

10000

5.7 Deploy Multi-Group Blockchain System

This chapter takes the star networking and parallel multi-group networking as an example to guide you to the
following.

* Learn to deploy multi-group blockchain with build_chain. sh shell script;

¢ Understand the organization of the multi-group blockchain created by build_chain.sh

* Learn how to start the blockchain node and get the consensus status of each group through the log;

» Learn how to send transactions to the given group and get the block generation status through the log;

* Understand node management of the blockchain system, including how to add/remove the given consensus
node;

* Learn how to create a new group.

Important:
* build_chain. sh is suitable for developers and users to use quickly

* Build an enterprise-level business chain, recommend to use generator

5.7.1 Introduction of star networking topology and parallel multi-group network-
ing topology

As shown in the following figure, the star networking topology and the parallel multi-group networking topology
are two widely used networking methods in blockchain applications.

5.7. Deploy Multi-Group Blockchain System 75

../enterprise_tools/index.html

FISCO BCOS EN Documentation, Release v2.5.0

 Star networking topology: The nodes of the central agency belong to multiple groups, and runs multiple
institutional applications. Nodes of the other agencies belongs to different groups and runs their respective
applications;

¢ Parallel multi-group networking topology: Each node in the blockchain belongs to multiple groups and
can be used for multi-service expansion or multi-node expansion of the same service.

agencyD groupl <«»
group2 «» 127001 127.00.1
nodeQ nodel

agen: agenc ,’ ,’ o ~
& ‘
' group .
C 1Y (1 ‘

&Y)

>\
s 'y

127001 127.0.01
node3 node2

Star networking topology Parallel multi-group networking topology

The following is a detailed description of how to deploy a eight-node star networking blockchain system and a
four-node parallel multi-group networking blockchain.

5.7.2 Installation dependency

Before deploying the FISCO BCOS blockchain, you need to install software such as openssl, curl, etc. The
specific commands are as follows:

CentOS
$ sudo yum install -y openssl curl

Ubuntu
$ sudo apt install -y openssl curl

Mac OS
$ brew install openssl curl

5.7.3 Star networking topology

In this chapter, we deploy a star networking blockchain system with four agencies, three groups and eight nodes
in the local machine.

Here is the detailed configuration of star networking blockchain:

* agencyA: belongs to groupl ~ group?2 ~ group3, including 2 nodes with the same IP address 127 .
0.0.1;

* agencyB: belongs to groupl, including 2 nodes with the same IP address 127.0.0.1;
* agencyC: belongs to group2, including 2 nodes with the same IP address 127.0.0.1;
* agencyD: belongs to group3, including 2 nodes with the same IP address 127.0.0. 1.

In a star network topology, the core node (in this case, the agencyA node) belongs to all groups and has a high
load. It is recommended to deploy it separately on a machine with better performance.

Important:

76 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

* In the actual application scenario, it is not recommended to deploy multiple nodes on the same ma-
chine. It is recommended to select the number of deployed nodes in one machine according to the machine
loading. Please refer to the hardware configuration

« In a star network topology, the core node (in this case, the agencyA node) belongs to all groups and has a
high load. It is recommended to deploy it separately on a machine with better performance.

* When operating in different machines, please copy the generated IP folder to the corresponding ma-

chine to start. The chain building operation only needs to be performed once!

Generate configuration for star networking blockchain

build_chain. sh supports to generate configurations for blockchain with any topology, you can use this script
to build configuration for the star networking blockchain.

Prepare for dependency

* Create an operation directory

mkdir -p ~/fisco && cd ~/fisco

* Download the build_chain.sh script

curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.5.0/build_
—chain.sh && chmod u+x build_chain.sh

Generate configuration for star networking blockchain system

Generate ip_ list (configuration)
ipconf << EOF
agencyA 1,2,3

S ¢

127.
127.
127.
127.

EOF

S ¥ R %

127
127
127
127

at
0.

0
0.
0

>

O O O O

.0.0.

.0.
.0.
.0.

o O O

1

1:
.1
1

ip:num:

= e

2
22
2

2

2
2
2

agency_name:
group_list:
1:

2

agencyB
agencyC
agencyD

Check the content
cat ipconf

Meaning of the space-separated parameters:
IP of the physical machine and the number of nodes

1
2
3

of ip _1list

agency name
the list of groups the nodes belong to,

agencyA 1,2,3

agencyB
agencyC
agencyD

1
2
3

groups are separated by comma

Create node configuration folder for star networking blockchain using build_chain script

Please refer to the build_chain for more parameter descriptions of build_chain. sh.

Generate a blockchain of star

—20201,

Generating
Processing
Processing
Processing
Processing

8545~8546 of the local
$ bash build_chain.sh —-f ipconf
Generating CA key...

networking and make sure ports 30300~30301, 20200~
machine are not occupied

-p 30300,20200,8545

Agency:agencyA Groups:
Agency:agencyB Groups:
Agency:agencyC Groups:
Agency:agencyD Groups:

(continues on next page)

5.7. Deploy Multi-Group Blockchain System

77

../manual/configuration.html

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

[INFO] FISCO-BCOS Path : ./bin/fisco-bcos

[INFO] IP List File : ipconf

[INFO] Start Port : 30300 20200 8545

[INFO] Server IP : 127.0.0.1:2 127.0.0.1:2 127.0.0.1:2 127.0.0.1:2
[INFO] State Type : storage

[INFO] RPC listen IP : 127.0.0.1

[INFO] Output Dir : /home/ubuntul6/fisco/nodes

[INFO] CA Key Path : /home/ubuntul6/fisco/nodes/cert/ca.key

[INFO] All completed. Files in /home/ubuntul6/fisco/nodes

The generated node file is as follows:

nodes

|-— 127.0.0.1

| | -—— fisco-bcos
| —— nodeO

| |-— conf # node configuration folder

|-— group.3.ini
|-— node.crt

| |-— ca.crt

\ |-— group.l.genesis
| |-— group.l.ini

| |-— group.2.genesis
| |-— group.2.ini

| |-— group.3.genesis
\

\

\

| -— node.key
| '—— node.nodeid # stores the information of Node ID
|-— config.ini # node configuration file
|-— start.sh # shell script to start the node
"—— stop.sh # shell script to stop the node
—-— nodel
|-— conf
...... omit other outputs here......

Note: If the generated nodes belong to different physical machines, the blockchain nodes need to be copied to
the corresponding physical machine.

Start node

FISCO-BCOS provides the start_all.shand stop_all. sh scripts to start and stop the node.

Switch to the node directory
$ cd ~/fisco/nodes/127.0.0.1

Start the node
$ bash start_all.sh

Check node process
$ ps aux | grep fisco-bcos

ubuntulé6 301 0.8 0.0 986644 7452 pts/0 Sl 15:21 0:00 /home/
—ubuntul6/fisco/nodes/127.0.0.1/node5/../fisco-bcos -c config.ini

ubuntulé 306 0.9 0.0 986644 6928 pts/0 S1 15:21 0:00 /home/
—ubuntul6/fisco/nodes/127.0.0.1/node6/../fisco-bcos -c config.ini

ubuntul6 311 0.9 0.0 986644 7184 pts/0 Sl 15:21 0:00 /home/
—ubuntulé6/fisco/nodes/127.0.0.1/node7/../fisco-bcos -c config.ini

ubuntulé6 131048 2.1 0.0 1429036 7452 pts/0 Sl 15:21 0:00 /home/
—ubuntul6/fisco/nodes/127.0.0.1/node0/../fisco-bcos -c config.ini

ubuntulé 131053 2.1 0.0 1429032 7180 pts/0 S1 15:21 0:00 /home/
—ubuntulé6/fisco/nodes/127.0.0.1/nodel/../fisco-bcos -c config.ini (continues on next page)

78 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

ubuntul6 131058 0.8 0.0 986644 7928 pts/0 Sl 15:21 0:00 /home/
—ubuntul6/fisco/nodes/127.0.0.1/node2/../fisco-bcos -c config.ini
ubuntulé6 131063 0.8 0.0 986644 7452 pts/0 Sl 15:21 0:00 /home/
—ubuntul6/fisco/nodes/127.0.0.1/node3/../fisco-bcos -c config.ini
ubuntulé 131068 0.8 0.0 986644 7672 pts/0 S1 15:21 0:00 /home/
—ubuntul6/fisco/nodes/127.0.0.1/noded/../fisco-bcos -c config.ini

Check consensus status of groups

When no transaction is sent, the node with normal consensus status will output +++ log. In this example, node0
and nodel belong to groupl, group2 and group3; node2 and node3 belong to groupl; node4 and
nodeb5 belong to group2; node6 and node7 belong to group3. Check the status of node by tail -f
nodex/log/* | grep "++".

Important:
Node with normal consensus status prints +++ log, fields of +++ log are defined as:
e g:: group ID;
* b1lkNum: the newest block number generated by the Leader node;
e tx: the number of transactions included in the new block;
¢ nodeIdx: the index of this node;

* hash: hash of the newest block generated by consensus nodes.

Check if node0 groupl is normal (Ctrl+c returns to the command line)

$ tail -f nodeO/log/* | grep "g:1l.x++"

info|2019-02-11 15:33:09.914042| [g:1][p:264] [CONSENSUS] [SEALER]++++++++Generating,,
—seal on,blkNum=1,tx=0,nodelIdx=2,hash=72254a42....

Check if node0 group2 is normal

$ tail -f nodeO/log/* | grep "g:2.x++"

info|2019-02-11 15:33:31.021697| [g:2][p:520] [CONSENSUS] [SEALER] ++++++++Generating,
—seal on,blkNum=1,tx=0,nodeldx=3, hash=ef59cfl7...

... To check nodel, node2 node for each group is normal or not, refer to the,
—above operation method. ..

Check if node3 groupl is normal

$ tail -f node3/log/*| grep "g:l.x++"

info|2019-02-11 15:39:43.927167| [g:1] [p:264] [CONSENSUS] [SEALER]++++++++Generating,
—seal on,blkNum=1,tx=0,nodeIdx=3,hash=5e94bf63...

Check if nodeb5 group2 is normal

$ tail -f node5/log/* | grep "g:2.x++"

infol2019-02-11 15:39:42.922510| [g:2] [p:520] [CONSENSUS] [SEALER]++++++++Generating,
—seal on,blkNum=1,tx=0,nodeIdx=2,hash=b80a724d...

Configuration console

The console connects to the FISCO BCOS node through the Web3SDXK, it is used to query the blockchain status
and deploy the calling contract, etc. Detailed instructions of console is here.

Important: The console relies on Java 8 and above, and Ubuntu 16.04 system needs be installed with openjdk 8.
Please install Oracle Java 8 or above for CentOS. If the script cannot be downloaded for a long time due to network

5.7. Deploy Multi-Group Blockchain System 79

FISCO BCOS EN Documentation, Release v2.5.0

problems, try curl -LO https://gitee.com/FISCO-BCOS/console/raw/master/tools/download_console.sh & & bash
download_console.sh

Switch back to ~/fisco folder
$ cd ~/fisco

Download console
$ curl -LO https://github.com/FISCO-BCOS/console/releases/download/v1.0.9/download_
—console.sh && bash download_console.sh

Switch to console directory
$ cd console

Copy node certificate of group 2 to the configuration directory of console
$ cp ~/fisco/nodes/127.0.0.1/sdk/» conf/

Obtain channel_listen port of nodel
$ grep "channel_ listen_port" ~/fisco/nodes/127.0.0.1/node*/config.ini

/home/ubuntulé/fisco/nodes/127.0.0.1/node0/config.ini: channel_listen_port=20200
/home/ubuntulé6/fisco/nodes/127.0.0.1/nodel/config.ini: channel_listen_port=20201
/home/ubuntulé/fisco/nodes/127. .1/node2/config.ini: channel_ listen port=20202

/home/ubuntul6/fisco/nodes/127. .1/node3/config.ini: channel_listen_port=20203
/home/ubuntulé/fisco/nodes/127. .1/noded4/config.ini: channel_listen_port=20204
/home/ubuntul6/fisco/nodes/127. .1/node5/config.ini: channel_ listen port=20205

/home/ubuntulé6/fisco/nodes/127.
/home/ubuntulé6/fisco/nodes/127.

.1/node6/config.ini: channel_listen_port=20206
.1/node7/config.ini: channel_listen_port=20207

O O O O O O
O O O O O O

Important: When connecting node with the console, we should make sure that the connected nodes are in the
group configured by the console

The configuration of the console configuration file conf/applicationContext .xml is as follows.. The
console is connected to three groups from node0 (127.0.0.1:20200), to get more information of console
configuration, please refer to here.

cat > ./conf/applicationContext.xml << EOF
<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:p="http://
—www.springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://
—www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring—aop—-2.5.xsd">

<bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">
<constructor-arg value="0"/> <!-- 0O:standard l:guomi -->
</bean>

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.
—handler.GroupChannelConnectionsConfig">
<property name="allChannelConnections">
<list>

(continues on next page)

80 Chapter 5. Manual (Revision in progress)

../manual/console.html#id7

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

<bean id="groupl" class="org.fisco.bcos.channel.handler.
—ChannelConnections">
<property name="groupId" value="1" />
<property name="connectionsStr">

<list>
<value>127.0.0.1:20200</value>
</list>
</property>
</bean>
<bean id="group2" class="org.fisco.bcos.channel.handler.

—ChannelConnections">
<property name="groupId" value="2" />
<property name="connectionsStr">

<list>
<value>127.0.0.1:20200</value>
</list>
</property>
</bean>
<bean id="group3" class="org.fisco.bcos.channel.handler.

—ChannelConnections">
<property name="groupId" value="3" />
<property name="connectionsStr">
<list>
<value>127.0.0.1:20200</value>
</list>
</property>
</bean>

</list>

</property>

</bean>

<bean id="channelService" class="org.fisco.bcos.channel.client.Service"
—depends-on="groupChannelConnectionsConfig">
<property name="groupId" value="1" />
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=
—"groupChannelConnectionsConfig"></property>
</bean>
</beans>
EOF

Start the console

$ bash start.sh

The following outputted information means the console has been successfully,,
—started. Otherwise, please check if the port configuration of the nodes in conf/
—applicationContext.xml 1is correct.

Welcome to FISCO BCOS console(1.0.3)!
Type 'help' or 'h' for help. Type 'quit' or 'g' to quit console.

| | \/ \ / \ / \ | \ / \ / \ / .
5S¢ $SSSSS| 55555 S | $SSSSS\ | $SSSSSS| $SSSSS| $$S5SS5 | S$$S85S
S
S5__\$| 55 \$| 5 | 8 | S5__/ §1 65 \$I 85 | 8| $5__\
%
\$5 \| $3 BEERNEEE | 55 8| &8 | S5 | $5\$s
=\
BEEEET | 55 _\$5SS5$| S5 __| 85 | 88 | $555558] §5 | $S | S$5_\$555%
~85\

(continues on next page)

5.7. Deploy Multi-Group Blockchain System 81

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

| $$ ZSSob N S oSS/ 1SS/ S8 | SS_/ S1 ss_/ | ss__/ $1 __|I
| $$ | $5 \\$$ EEAL-E $S\$$ $9 | $$ SS\$s SS\$S EEAL-E

\$$ \$S5558 \$55555 \$55558 \$55555 \$S555555 \855555 \$55555 \555

Send transactions to groups

In the above section, we learned how to configure the console, this section will introduce how to send transactions
to groups through the console.

Important: In the group architecture, the ledgers are independent in each group. And sending transactions to
one group only increases the block number of this group but not others

Send transactions through console

... Send HelloWorld transaction to groupl...

$ [group:1]> deploy HelloWorld

contract address:0x8cl7cf316c1063ab6c89df875e96c9f0f5p2£744

Check the current block number of groupl, if the block number is increased to 1,
— 1t indicates that the blockchain is normal. Otherwise, please check if groupl,
—1is abnormal.

$ [group:1]> getBlockNumber

1

... Send HelloWorld transaction to group2...

Switch to groupZ2

$ [group:1]> switch 2

Switched to group 2.

Send transaction to group2, return a transaction hash indicates that the,
—transaction is deployed successfully, otherwise, please check if the groupZ2,_
—works normally.

$ [group:2]> deploy HelloWorld

contract address:0x8cl7c£316cl1063ab6c89df875e96c9f0£f5b2f744

Check the current block number of group2, if the block number is increased to 1,
— 1t indicates that the blockchain is normal. Otherwise, please check if groupl,
—~1s abnormal

$ [group:2]> getBlockNumber

1

... Send transaction to group3...

Switch to group3

$ [group:2]> switch 3

Switched to group 3.

Send transaction to group3, return a transaction hash indicates that the,
—transaction is deployed successfully, otherwise, please check if the groupZ2,_
—works normally.

$ [group:3]> deploy HelloWorld

contract address:0x8cl7cf£316cl1063ab6c89df875e96c9f0f5b2£744

Check the current block number of group3, if the block number is increased to 1,
— 1t indicates that the blockchain is normal. Otherwise, please check if groupl,
—1s abnormal

$ [group:3]> getBlockNumber

1

(continues on next page)

82 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

... Switch to group 4 that does not exist: the console prompts that group4 does_
—not exist, and outputs the current group list

$ [group:3]> switch 4

Group 4 does not exist. The group list is [1, 2, 3].

Exit the console
$ [group:3]> exit

Check the log

After the block is generated, the node will output Report log, which contains fields with following definitions:

Switch the node directory
$ cd ~/fisco/nodes/127.0.0.1

Check the block generation status of groupl: new block generated

$ cat nodeO/log/*x |grep "g:1.xReport"

info|2019-02-11 16:08:45.077484| [g:1][p:264] [CONSENSUS] [PBFT]"""*"""""Report,num=1,
—sealerIdx=1,hash=9b5487a6...,next=2,tx=1,nodeldx=2

Check the block generation status of group2: new block generated

$ cat node0O/log/* |grep "g:2.xReport"

infol2019-02-11 16:11:55.354881| [g:2][p:520] [CONSENSUS] [PBFT]"*""*""*"Report, num=1,
—sealerIdx=0,hash=434b6e07...,next=2,tx=1,nodeIdx=0

Check the block generation status of group3: new block generated

$ cat node0/log/* |grep "g:3.xReport"

info|2019-02-11 16:14:33.930978| [g:3][p:776] [CONSENSUS] [PBFT] """"""""Report, num=1,
—sealerIdx=1,hash=3a42fcdl...,next=2,tx=1,nodelIdx=2

Node joins the group

Through the console, FISCO BCOS can add the specified node to the specified group, or delete the node from the
specified group. For details, please refer to the node admission management manual, for console configuration,
please reference console operation manual.

Taking how to join node2 to group2 as an example, this chapter introduces how to add a new node to an existing
group.
Copy group2 configuration to node2

Switch to node directory
$ cd ~/fisco/nodes/127.0.0.1

... Copy group2 configuration of nodeO to node2
$ cp node0O/conf/group.2.* node2/conf

...Restart node2 (make sure the node 1is in normal consensus after restart)...
$ cd node2 && bash stop.sh && bash start.sh

Get the ID of node2

Please remember the node ID of nodeZ. Add node2 to groupZ needs the node ID.
$ cat conf/node.nodeid
6dc585319e4cf7d73ede73819c6966eadbed74aadbbcbalbbb777132£63d355965¢3502bed7a04425d99

rdcfb7694alcl

Send commands to group2 through the console to add node2 into group2

5.7. Deploy Multi-Group Blockchain System 83

../manual/console.html#id7

FISCO BCOS EN Documentation, Release v2.5.0

...Go back to the console directory and launch the console (direct boot to
—groupZ2) ...
$ cd ~/fisco/console && bash start.sh 2

...Join node2 as a consensus node through the console...
1. Check current consensus node 1list
[group:2]> getSealerList

— A S %

—9217e87c6b76184cf70a5a77930ad5886eab8aefbccel9090db799e45b520baa53d5bb9abedddeab947

—

—227c600c2e52d8ec37aa9f8de8db016ddclc8a30bb77ec7608b99%9ee2233480d4c06337d2461e24c2661

—

—7a50b646fcd%ac7dd0b87299f79ccaal2adbl3af875bd0947221babdeclclbadadd7f7£690c95¢cf3e7962

—

—8b2c4204982d2a2937261e648c20£e80d256dfb47bda27b420e76697897b0b0ebb42c140b4e8bf0£27
1

2. Add node2 to the consensus node

The parameter after addSealer is the node ID obtained in the previous step

$ [group:2]> addSealer

—6dc585319e4cf7d73ede73819c6966eadbed74aadbbcbalbbb777132£63d355965¢c3502bed7a04425d
{

"code":0,

"msg" :"success"

3. Check current consensus node 1ist
[group:2]> getSealerList

— Y S

51df179d54d4

Tb6fd53acfab

96cfd4adc989f

fee64c946039

9cdcfb7694al

—9217e87c6b76184cf70a5a77930ad5886eab8aefbcceld09bdb799%9e45b520baab3d5bb9%abedddeab94]51d£179d54d4

—

—227c600c2e52d8ec37aa%9£f8de8db016ddclc8a30bb77ec7608b99ee2233480d4c06337d2461e24c266]7b6fd53acfab

—

—7a50b646£cd%9ac7dd0b87299f79ccaa2ad4b3af875bd0947221batbdeclclbad4add7£7£690c95¢cf3e796296cf4adc989f

—

—8b2c4204982d2a2937261e648c20£e80d256dfb47bda27b420e76697897b0b0ebb42c140b4e8bf0£27

—

—6dc585319e4cf7d73ede73819c6966eadbed74aadbbcbalbbb777132£63d355965¢c3502bed7a04425d
—# new node

]

Get the current block number of groupZ2
$ [group:2]> getBlockNumber

2

#... Send transaction to groupZ2

Deploy the HelloWorld contract and output contract address. If the contract,
—~fails to deploy, please check the consensus status of groupZ2

$ [group:2] deploy HelloWorld

contract address:0xdfdd3ada340d7346c40254600aed4bb7a6cd8e660

Get the current block number of group2, it increases to 3. If not, please check,
—the consensus status of groupZ2

$ [group:2]> getBlockNumber

3

(continues on next page)

84 Chapter 5. Manual (Revision in progress)

fee64c946039

9cdcfb7694al

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

Exit the console
$ [group:2]> exit

Check the block generation status of the new node through log

Switch to the node directory

cd ~/fisco/nodes/127.0.0.1

Check the consensus status of the node (Ctrl+c returns the command line)

$ tail —-f node2/log/* | grep "g:2.x++"

info|2019-02-11 18:41:31.625599| [g:2] [p:520] [CONSENSUS] [SEALER] ++++++++Generating,
—seal on,blkNum=4,tx=0,nodeIdx=1,hash=c8aled9c...

...... Other outputs are omitted here......

Check the block generation status of node2 and groupZ2: new block generated

$ cat node2/log/* | grep "g:2.xReport"

info|2019-02-11 18:53:20.708366| [g:2] [p:520] [CONSENSUS] [PBFT]"*""""Report:,num=3,
—1dx=3,hash=80c98d31...,next=10,tx=1,nodeIdx=1

node2 also reports a block with block number 3, indicating that node2 has joined,
—groupZ.

Stop the node

Back to the node directory && stop the node
$ cd ~/fisco/nodes/127.0.0.1 && bash stop_all.sh

5.7.4 Parallel multi-group networking topology

Deploying parallel multi-group networking blockchain is similar with deploying star networking blockchain. Tak-
ing a four-node two-group parallel multi-group blockchain as an example:

 group 1: includs 4 nodes with the same IP 127.0.0.1;
e group 2: includs 4 nodes with the same I[P 127.0.0.1.

In a real application scenario, it is not recommended to deploy multiple nodes on the same machine. It is rec-
ommended to select the number of deployed nodes according to the machine load. To demonstrate the parallel
multi-group expansion process, only groupl is created here first. In a parallel multi-group scenario, node join and
exit group operations are similar to star networking topology.

Important:

¢ In a real application scenario, it is not recommended to deploy multiple nodes the same machine, It is
recommended to determine the number of deployed nodes according to the machine load

* To demonstrate the parallel multi-group expansion process, only groupl is created here first

* In a parallel multi-group scenario, the operations of node joining into a group or leaving from a group are
similar to star networking blockchain.

Build blockchain with a single group and 4 nodes

Generate a single-group four-node blockchain node configuration folder with the build_chain.sh
script

5.7. Deploy Multi-Group Blockchain System 85

FISCO BCOS EN Documentation, Release v2.5.0

$ mkdir -p ~/fisco && cd ~/fisco

Download build _chain.sh script

$ curl -LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.5.0/build_
—~chain.sh && chmod u+x build_chain.sh

#Build a local single-group four-node blockchain (in a production environment, it
—1s recommended that each node be deployed on a different physical machine)

$ bash build_chain.sh -1 "127.0.0.1:4" -o multi_nodes -p 20000,20100, 7545
Generating CA key...

Generating keys
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1l

Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1l

[INFO] FISCO-BCOS Path : bin/fisco-bcos

[INFO] Start Port : 20000 20100 7545

[INFO] Server IP : 127.0.0.1:4

[INFO] State Type : storage

[INFO] RPC listen IP : 127.0.0.1

[INFO] Output Dir : /home/ubuntulé/fisco/multi_nodes

[INFO] CA Key Path : /home/ubuntulé6/fisco/multi_nodes/cert/ca.key

[INFO] All completed. Files in /home/ubuntul6/fisco/multi_nodes

Start all nodes

Switch to the node directory
S cd ~/fisco/multi_nodes/127.0.0.1
$ bash start_all.sh

Check process
$ ps aux | grep fisco-bcos

ubuntul6 55028 0.9 0.0 986384 6624 pts/2 Sl 20:59 0:00 /home/
—ubuntul6/fisco/multi_nodes/127.0.0.1/node0/../fisco-bcos —-c config.ini
ubuntulé6 55034 0.8 0.0 986104 6872 pts/2 Sl 20:59 0:00 /home/
—ubuntulé6/fisco/multi_nodes/127.0.0.1/nodel/../fisco-bcos -c config.ini
ubuntul6 55041 0.8 0.0 986384 6584 pts/2 S1 20:59 0:00 /home/
—ubuntul6/fisco/multi_nodes/127.0.0.1/node2/../fisco-bcos -c config.ini
ubuntul6 55047 0.8 0.0 986396 6656 pts/2 Sl 20:59 0:00 /home/

—ubuntul6/fisco/multi_nodes/127.0.0.1/node3/../fisco-bcos —-c config.ini

Check consensus status of nodes

Check consensus status of node0O (Ctrl+c returns to the command line)

$ tail -f nodeO/log/* | grep "g:l.x++"

info|2019-02-11 20:59:52.065958| [g:1][p:264] [CONSENSUS] [SEALER] ++++++++Generating
—seal on,blkNum=1,tx=0,nodeldx=2,hash=da72649%e...

Check consensus status of nodel

$ tail -f nodel/log/* | grep "g:l.x++"

info|2019-02-11 20:59:54.070297| [g:1][p:264] [CONSENSUS] [SEALER] ++++++++Generating,,
—seal on,blkNum=1,tx=0,nodeIdx=0,hash=11c9354d...

Check consensus status of node2

$ tail -f node2/log/* | grep "g:l.x++"

info|2019-02-11 20:59:55.073124| [g:1][p:264] [CONSENSUS] [SEALER] ++++++++Generating,
—seal on,blkNum=1,tx=0,nodeIdx=1,hash=b65cbac8...

Check consensus status of node3
$ tail -f node3/log/* | grep "g:l.x++"
info|2019-02-11 20:59:53.067702| [g:1][p:264] [CONSENSUS] [SEALER] ++++++++Generating

=sSeal oI, bIRNuUm=1, tX=0, Todeldx=3, nasi=0467e5Cc4. .. (continues on next page)

86 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

|

Add group2 to the blockchain

The genesis configuration files in each group of parallel multi-group networking blockchain are almost the
same, except group ID [group].id, which is the group number.

Switch to the node directory
S cd ~/fisco/multi_nodes/127.0.0.1

Copy the configuration of group 1

$ cp nodeO/conf/group.l.genesis node0/conf/group.2.genesis
$ cp node0O/conf/group.l.ini node0/conf/group.2.ini

Modify group ID

$ sed -1 "s/id=1/1d=2/g" node0/conf/group.2.genesis

$ cat nodeO/conf/group.2.genesis | grep "id"

Have modified to id=2

H

Update the list of consensus nodes in the "group.Z2.genesis" to remove obsolete,
—consensus nodes

Copy the configuration to each node

$ cp nodeO/conf/group.2.genesis nodel/conf/group.2.genesis
$ cp node0O/conf/group.2.genesis node2/conf/group.2.genesis
$ cp nodeO/conf/group.2.genesis node3/conf/group.2.genesis
$ cp nodeO/conf/group.2.ini nodel/conf/group.2.ini

$ cp node0O/conf/group.2.ini node2/conf/group.2.ini

$ cp nodeO/conf/group.2.ini node3/conf/group.2.ini

Restart node

$ bash stop_all.sh

$ bash start_all.sh

Check consensus status of the group

Check the consensus status of node0 group?2

$ tail -f nodeO/log/* | grep "g:2.x++"

info|2019-02-11 21:13:28.541596| [g:2] [p:520] [CONSENSUS] [SEALER]++++++++Generating,
—seal on,blkNum=1,tx=0,nodeldx=2,hash=f3562664...

Check the consensus status of nodel group2

$ tail -f nodel/log/* | grep "g:2.x++"

info|2019-02-11 21:13:30.546011| [g:2][p:520] [CONSENSUS] [SEALER] ++++++++Generating
—seal on,blkNum=1,tx=0,nodeldx=0, hash=4bl7e74f...

Check the consensus status of node2 groupZ2

$ tail -f node2/log/* | grep "g:2.x++"

infol2019-02-11 21:13:59.653615| [g:2] [p:520] [CONSENSUS] [SEALER] ++++++++Generating,
—seal on,blkNum=1,tx=0,nodeIdx=1,hash=90cbd225...

Check the consensus status of node3 group?2

$ tail -f node3/log/* | grep "g:2.x++"

info|2019-02-11 21:14:01.657428| [g:2][p:520] [CONSENSUS] [SEALER] ++++++++Generating,,
—seal on,blkNum=1,tx=0,nodeIdx=3,hash=d7dcb462...

5.7. Deploy Multi-Group Blockchain System 87

FISCO BCOS EN Documentation, Release v2.5.0

Send transactions to groups

Download console

If you have never downloaded the console, please do the following to download,
—~the console, otherwise copy the console to the ~/fisco directory:

$ cd ~/fisco

Download console

$ curl -LO https://github.com/FISCO-BCOS/console/releases/download/v1.0.9/download_
—console.sh && bash download_console.sh

Configuration console

Get channel_port
$ grep "channel_ listen_port" multi_nodes/127.0.0.1/node0/config.ini

multi_nodes/127.0.0.1/node0/config.ini: channel_listen_port=20100
Switch to console subdirectory

$ cd console

Copy node certificate

$ cp ~/fisco/multi_nodes/127.0.0.1/sdk/* conf

The configuration of the console configuration file conf/applicationContext .xml is created as fol-
lows. Two groups (groupl and group2) are configured on node((127.0.0.1:20100):

cat > ./conf/applicationContext.xml << EOF
<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:p="http://
—www.springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://
—wWww.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx—-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring—aop—-2.5.xsd">

<bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">
<constructor-arg value="0"/> <!-- O:standard l:guomi -->
</bean>

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.

—handler.GroupChannelConnectionsConfig">

<property name="allChannelConnections">

<list>

<bean id="groupl" class="org.fisco.bcos.channel.handler.
—ChannelConnections">
<property name="groupId" value="1" />
<property name="connectionsStr">

<list>
<value>127.0.0.1:20100</value>
</list>
</property>
</bean>
<bean id="group2" class="org.fisco.bcos.channel.handler.

—ChannelConnections">
<property name="groupId" value="2" />

(continues on next page)

88 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

<property name="connectionsStr">
<list>
<value>127.0.0.1:20100</value>
</list>
</property>
</bean>

</list>

</property>

</bean>

<bean id="channelService" class="org.fisco.bcos.channel.client.Service"
—depends-on="groupChannelConnectionsConfig">
<property name="groupId" value="1" />
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=
—"groupChannelConnectionsConfig"></property>
</bean>
</beans>
EOF

Send transactions to groups via console

... Start console ...

$ bash start.sh

The following information output indicates that the console is successfully,,
—started. If the startup fails, check whether the certificate configuration and,
—the channel listen port configuration are correct.

Welcome to FISCO BCOS console(1.0.3)!
Type 'help' or 'h' for help. Type 'quit' or 'g' to quit console.

! | \/ \ / \ / \ | \ / \ / \ / B
r;ssswss\swsm $555551 $555851 SSSSSS\ | $555555| $S5585| 58855 $5588
fié_ | SS 1 SS__\$| S5 \$| S5 | S5 | $S5__/ S| S5 \$| S5 | $| $S5__\
F’i’i \ 185 \$s \] 58 | 85 | S5 | 85 §| 88 |55 1 S5\$3
|H;$sss | 55 _\$5SS5§1 S5 | S5 | S5 | $55585§] S5 __| 55 | S5_\§5585%
F’ié 1SS NI 1SS/ 1 SS__/ S5 | S5/ §1 S5/ | S5/ $1 __|
F’ii |85 \\S% S35\$5 S5\$s 85 | $5 55\$35 S5\85 S5\$3
Tii \$S5558 \$55555 \$55555 \$55558 \$555555 \$55555 \$S5558 \$5555
=8

Send transaction to group 1...
Get the current block number

$ [group:1]> getBlockNumber
0
#

Deploy the HelloWorld contract to groupl. If the deployment fails, check whether,,
—the consensus status of groupl is normal
$ [group:1]> deploy HelloWorld
contract address:0x8cl7c£316cl063ab6c89df875e96c9£0£5b2£744
Get the current block number. If the block number is not increased, please check,,
—1f the groupl is normal
$ [group:1]> getBlockNumber
1

1

(continues on next page)

5.7. Deploy Multi-Group Blockchain System 89

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

... send transaction to group 2...

Switch to group2

$ [group:1]> switch 2

Switched to group 2.

Get the current block number

$ [group:2]> getBlockNumber

0

Deploy HelloWorld contract to group2

$ [group:2]> deploy HelloWorld

contract address:0x8cl7c£316cl1063ab6c89df875e96c9£f0£5b2£744
Get the current block number. If the block number is not increased, please check,
—1f the groupl is normal

$ [group:2]> getBlockNumber

1

Exit console

S[group:2]> exit

Check block generation status of nodes through log

Switch to the node directory
$ cd ~/fisco/multi_nodes/127.0.0.1/

Check block generation status of groupl, and to see that the block with block,,
—number of 1 belonging to groupl is reported.

$ cat nodeO/log/* | grep "g:1.xReport"

infol2019-02-11 21:14:57.216548| [g:1][p:264] [CONSENSUS] [PBFT]""*""Report:,num=1,
—sealerIdx=3,hash=be961c98...,next=2,tx=1,nodelIdx=2

Check block generation status of group2, and to see that the block with block,,
—number of 1 belonging to group2 is reported.

$ cat nodeO/log/* | grep "g:2.xReport"

infol2019-02-11 21:15:25.310565| [g:2] [p:520] [CONSENSUS] [PBFT]*"*""Report:,num=1,
—sealerIdx=3,hash=5d006230...,next=2,tx=1,nodelIdx=2

Stop nodes

Back to nodes folder && stop the node
$ cd ~/fisco/multi_nodes/127.0.0.1 && bash stop_all.sh

5.8 Console

Console is an important interactive client tool of FISCO BCOS 2.0. It establishes a connection with blockchain
node through Web3SDK to request read and write access for blockchain node data. Console has a wealth of
commands, including blockchain status inquiry, blockchain nodes management, contracts deployment and calling.
In addition, console provides a contract compilation tool that allows users to easily and quickly compile Solidity
contract files into Java contract files.

5.8.1 Console command

Console command consists of two parts, the instructions and the parameters related to the instruction:

¢ Instruction: instruction is an executed operation command, including blockchain status inquiry and con-
tracts deployment and calling. And some of the instructions call the JSON-RPC interface, so they have
same name as the JSON-RPC interface. Use suggestions: instructions can be completed using the tab
key, and support for displaying historical input commands by pressing the up and down keys.

920 Chapter 5. Manual (Revision in progress)

https://github.com/FISCO-BCOS/console

FISCO BCOS EN Documentation, Release v2.5.0

* Parameters related to the instruction: parameters required by instruction call interface. Instructions to
parameters and parameters to parameters are separated by spaces. The parameters name same as JSON-RPC
interface and the explanation of getting information field can be referred to JSON-RPC API.

5.8.2 Common command link:

Contract related commands

* useCNS to deploy and call contract (recommend)

— deploy contract: deployByCNS

— call contract: callByCNS

— query CNS deployment contract information: queryCNS
¢ deploy and call contract normally

— deploy contract: deploy

— call contract: call

Other commands

e query block number:getBlockNumber
e query Sealer list:getSealerList
* query the information of transaction receipt: getTransactionReceipt

* switch group: switch

5.8.3 Shortcut key

e Ctrl+A: move cursor to the beginning of line

* Ctrl+D: exit console

e Ctrl+E: move cursor to the end of line

e Ctrl+R: search for the history commands have been entered
* 1: browse history commands forward

¢ |: browse history commands backward

5.8.4 Console response
When a console command is launched, the console will obtain the result of the command execution and displays
the result at the terminal. The execution result is divided into two categories:
* True: The command returns to the true execution result as a string or json.
* False: The command returns to the false execution result as a string or json.
— When console command call the JSON-RPC interface, error code reference here.

— When console command call the Precompiled Service interface, error code reference here.

5.8. Console 91

./console.html#deploybycns
./console.html#callbycns
./console.html#querycns
./console.html#deploy
./console.html#call
./console.html#getblocknumber
./console.html#getsealerlist
./console.html#gettransactionreceipt
./console.html#switch
../design/rpc.html#id6
../sdk/sdk.html#precompiled-service-api

FISCO BCOS EN Documentation, Release v2.5.0

5.8.5 Console configuration and operation

Important: Precondition: to build FISCO BCOS blockchain, please refer to Building Chain Script or Enterprise
Tools.

Get console

$ cd ~ && mkdir fisco && cd fisco

get console

$ curl -LO https://github.com/FISCO-BCOS/console/releases/download/v1.0.9/download_
—console.sh && bash download_console.sh

Note:

e If the script cannot be downloaded for a long time due to network problems, try curl
-LO https://gitee.com/FISCO-BCOS/console/raw/master/tools/download_console.sh & & bash down-
load_console.sh

The directory structure is as follows:

|-— apps # console jar package directory

| —— console. jar

|-— 1lib # related dependent jar package directory

|-— conf

| |-— applicationContext-sample.xml # configuration file

| |-— log4j.properties # log configuration file

|-— contracts # directory where contract locates

| —— solidity # directory where solidity contract locates

| —-— HelloWorld.sol # normal contract: HelloWorld contract, is deployable_,
—and callable

| —— TableTest.sol # the contracts by using CRUD interface: TableTest_
—contract, 1is deployable and callable

| —-— Table.sol # CRUD interfac contract

| —-— console # The file directory of contract abi, bin, java compiled when_,
—console deploys the contract

| -— sdk # The file directory of contract abi, bin, java compiled by,
—solZjava.sh script

|-— start.sh # console start script

|-— get_account.sh # account generate script

|-— sol2java.sh # development tool script for compiling solidity contract file as,
— java contract file

|-— replace_solc_jar.sh # a script for replacing the compiling jar package

Configure console

* Blockchain node and certificate configuration:
— Tocopy the ca.crt, sdk.crt, and sdk . key files in the sdk node directory to the conf directory.

— To rename the applicationContext-sample.xml file in the conf directory to the
applicationContext.xml file. To configure the applicationContext.xml file, where
the remark content is modified according to the blockchain node configuration. **Hint: If
the channel_listen_ip(If the node version is earlier than v2.3.0, check the configuration item lis-
ten_ip) set through chain building is 127.0.0.1 or 0.0.0.0 and the channel port is 20200, the
applicationContext .xml configuration is not modified. **

92 Chapter 5. Manual (Revision in progress)

./build_chain.html
../enterprise_tools/index.html
../enterprise_tools/index.html

FISCO BCOS EN Documentation, Release v2.5.0

<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xmlns:p="http://
—www.springframework.org/schema/p"
xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://
—www.springframework.org/schema/aop"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx—-2.5.xsd
http://www.springframework.org/schema/aop
http://www.springframework.org/schema/aop/spring-—aop-2.5.xsd">

<bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">
<constructor—-arg value="0"/> <!-- O:standard 1:guomi ——>
</bean>

<bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.
—handler.GroupChannelConnectionsConfig">
<property name="allChannelConnections">
<list> <!-- each group need to configure a bean ——>
<bean id="groupl" class="org.fisco.bcos.channel.

—handler.ChannelConnections">

<property name="groupld" value="1" /> </-——
—groupID ——>

<property name="connectionsStr">

<list>
<value>127.0.0.1:20200</
—value> <!-- IP:channel port —-—>
</list>
</property>
</bean>
</list>
</property>
</bean>

<bean id="channelService" class="org.fisco.bcos.channel.client.Service" |
—depends-on="groupChannelConnectionsConfig">
<property name="groupld" value="1" /> <!/-- to connect to the group,
—with ID 1 ——>
<property name="orgID" value="fisco" />
<property name="allChannelConnections" ref=
—"groupChannelConnectionsConfig"></property>
</bean>

</beans>

Configuration detail reference here.

Important: Console configuration instructions
* If the console is configured correctly, but when it is launched on Cent0S system, the following error occurs:
Failed to connect to the node. Please check the node status and the console configuration.

It is because the JDK version that comes with the CentOS system is used (it will cause the console and
blockchain node’s authentication to fail). Please download Java 8 version or above from OpenJDK official
website or Oracle official website and install (specific installation steps refer to Appendix). To launch the
console after installation.

5.8. Console 93

../sdk/sdk.html#spring
https://jdk.java.net/java-se-ri/8
https://jdk.java.net/java-se-ri/8
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
./console.html#java

FISCO BCOS EN Documentation, Release v2.5.0

* When the console configuration file configures multiple node connections in a group, some nodes in the
group may leave the group during operation. Therefore, it shows a norm which is when the console is
polling, the return information may be inconsistent. It is recommended to configure a node or ensure that
the configured nodes are always in the group when using the console, so that the inquired information in the
group will keep consistent during the synchronization time.

Configure OSCCA-approved cryptography console

 Blockchain node and certificate configuration:
— Tocopythe ca.crt, sdk.crt, and sdk . key files in the sdk node directory to the conf directory.

— To rename the applicationContext-sample.xml file in the conf directory to the
applicationContext.xml file. To configure the applicationContext .xml file, where
the remark content is modified according to the blockchain node configuration. **Hint: If
the channel_listen_ip(If the node version is earlier than v2.3.0, check the configuration item lis-
ten_ip) set through chain building is 127.0.0.1 or 0.0.0.0 and the channel_port is 20200, the
applicationContext.xml configuration is not modified. **

* Open OSCCA-approved cryptography switch

<bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">

<!-- set encryptType value to 1 —-->
<constructor-arg value="1"/> <!-- O:standard l:guomi -->
</bean>

* Replace compile Jar package

Download solcJd-all-0.4.25-gm. jar package, and put it console dictionary

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcd—
—~all-0.4.25-gm. jar

Replace Jar package.

$ bash replace_solc_jar.sh solcJ-all-0.4.25-gm. jar

Note:

e If the package cannot be downloaded for a long time due to network problems, try curl -LO
https://www.fisco.com.cn/cdn/deps/tools/solcj/solcJ-all-0.4.25-gm.jar

Contract compilation tool

Console provides a special compilation contract tool that allows developers to compile Solidity contract files
into Java contract files. Two steps for using the tool:

* To place the Solidity contract file in the contracts/solidity directory.

¢ Complete the task of compiling contract by running the sol2java.sh script (requires specifying a
java package name). For example, there are HelloWorld.sol, TableTest.sol, and Table.sol
contracts in the contracts/solidity directory, and we specify the package name as org.com.
fisco. The command is as follows:

$ cd ~/fisco/console
$./sol2java.sh org.com.fisco

After running successfully, the directories of Java, ABI and bin will be generated in the console/contracts/
sdk directory as shown below.

94 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

" “bash

|-— abi # to compile the generated abi directory and to store the abi file
—compiled by solidity contract

| |-— HelloWorld.abi

| | -—— Table.abi

| | -— TableTest.abi

|-— bin # to compile the generated bin directory and to store the bin file
—compiled by solidity contract

| |-— HelloWorld.bin

| | -— Table.bin

| | -—— TableTest.bin

|-— java # to store compiled package path and Java contract file

|

|

|

|

|-— org
|-— com
|-— fisco
|-— HelloWorld.java # the target Java file which is compiled
—successfully
| |-— Table.java # the CRUD interface Java file which is compiled
—successfully
| |-— TableTest.java # the TableTest Java file which is compiled

—successfully

In the java directory, org/com/fisco/ package path directory is generated. In the package path direc-
tory, the java contract files HelloWorld. java, TableTest. java and Table. java will be generated.
HelloWorld. java and TableTest . java are the java contract files required by the java application.

**Note: ** The downloaded console contains solcJd-all-0.4.25. jar in the console/1lib directory,
so it supports the 0.4 version of the contract compilation. If you are using a 0.5 version contract com-
piler or a national cryptography contract compiler, please download the relevant contract compiler jar pack-
age, and replace solcJ-all-0.4.25. jar in the console/1ib directory. It can be replaced by the ./
replace_solc_jar. sh script. To specify the jar package path, the command is as follows:

To download solcJd-all-0.5.2.jar and to place in console directory, the example,,
—usage 1s as follows

$./replace_solc_jar.sh solcJd-all-0.5.2.7jar

Download contract compilation jar package

0.4 version contract compilation jar package

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcd—
—all-0.4.25.3jar

0.5 version contract compilation jar package

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcd—
—all-0.5.2.7Jar

National cryptography 0.4 version contract compilation jar package

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcd-
—all-0.4.25-gm. jar

National cryptography 0.5 version contract compilation jar package

$ curl -LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/solcj/solcd—
—all-0.5.2-gm. jar

5.8. Console 95

FISCO BCOS EN Documentation, Release v2.5.0

Launch console

Start the console while the node is running:

$./start.sh
To output the following information to indicate successful launch

Welcome to FISCO BCOS console(1.0.3)!
Type 'help' or 'h' for help. Type 'quit' or 'g' to quit console.

! | \/ \ / \ / \ | \ / \ / \ / .
|H;s$$$$s$\$$$$s| $555551 $55585| SSSSSS\ | $555855| $S5555| 58855 $5588
fié_ | $S | $S__\S| S5 \S| $S | $8 | $5_/ S| $5 \S| S5 | §| $5__\
Fii TR V- BT | SS | $S | 85§ §S |85 | $5\85
|H;ssss | 85 _\$SSS8S| S5 | $8 | S5 | $555885| S5 __| §5 | S$5_\$558%
fié 1SS NI 1SS/ | SS_/ S5 | $5_/ S| S$S5_/ | $5_/ S| __|
ﬁgi |55 \\SS $8\$5 85\8S S5 | 8§ $5\85 $5\88 $5\8§
(ii \$55555 \S55555 \$55585 \555853 \S555555 \S55555 \$55555 \55555
8

Launch script description

To view the current console version:

./start.sh —--version
console version: 1.0.3

Account using method
Console loads private key

The console provides the account generation script get_account.sh (for the script tutorial, please refer to Account
Management Document. The generated account file is in the accounts directory, and the account file loaded by
console must be placed in the directory.

The console startup methods are as follows:

./start.sh

./start.sh groupID

./start.sh groupID -pem pemName
./start.sh groupID -pl2 pl2Name

Default start

The console randomly generates an account that is started with the group number specified in the console config-
uration file.

96 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

./start.sh

Specify group number to start

The console randomly generates an account that is started with the group number specified on the command line.

./start.sh 2

» Note: The specified group needs to configure ‘bean’ in the console configuration file.

Start with PEM format private key file

« Start with the account of the specified pem file, enter the parameters: group number, -pem, and pem file
path

./start.sh 1 -pem accounts/0xebb824al1122e587b17701ed2e512d8638dfb9c88.pem

Start with PKCS12 format private key file

« Start with the account of the specified p12 file, enter the parameters: group number, -p12, and p12 file path

./start.sh 1 -pl2 accounts/0x5ef4dflbl56bc9f077ee992a283c2dbb0bf045c0.pl2
Enter Export Password:

5.8.6 Console command
help

Enter help or h to see all the commands on the console.

[group:1]> help

o
addObserver Add an observer node.

addSealer Add a sealer node.

call Call a contract by a function and,
—Parameters.

callByCNS Call a contract by a function and
—Parameters by CNS.

deploy Deploy a contract on blockchain.
deployByCNS Deploy a contract on blockchain by CNS.
desc Description table information.

exit Quit console.

getBlockByHash Query information about a block by hash.
getBlockByNumber Query information about a block by block,
—number.

getBlockHashByNumber Query block hash by block number.
getBlockNumber Query the number of most recent block.
getCode Query code at a given address.
getConsensusStatus Query consensus status.

getDeployLog Query the log of deployed contracts.
getGroupList Query group list.

getGroupPeers Query nodeId list for sealer and observer
—nodes.

getNodeIDList Query nodeId list for all connected nodes.

(continues on next page)

5.8. Console

97

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

getNodeVersion
getObserverList
getPbftView
getPeers

—client.
getPendingTransactions
getPendingTxSize
getSealerList
getSyncStatus
getSystemConfigByKey
setSystemConfigByKey
getTotalTransactionCount
getTransactionByBlockHashAndIndex

Query
Query
Query
Query

Query
Query
Query
Query
Query
Set a
Query
Query

—block hash and transaction index position.

getTransactionByBlockNumberAndIndex

Query

—block number and transaction index position.

getTransactionByHash
—requested by transaction hash.
getTransactionReceipt
—transaction hash.
getTransactionByHashWithProof
—proof by transaction hash.
getTransactionReceiptByHashWithProof
—proof by transaction hash.
grantCNSManager
grantDeployAndCreateManager
—create user table by address.
grantNodeManager

—by address.
grantSysConfigManager

by address.
grantUserTableManager

—name and address.

help (h)

listCNSManager
listDeployAndCreateManager
—contract and create user table.
listNodeManager
—configuration.
listSysConfigManager
—configuration.
listUserTableManager
—~information.

queryCNS

—and contract version.

quit (q)

removeNode

revokeCNSManager
revokeDeployAndCreateManager
—create user table by address.
revokeNodeManager

—by address.
revokeSysConfigManager
—configuration by address.
revokeUserTableManager

—name and address.
listContractWritePermission
—permission of the contract.
grantContractWritePermission
—permission.
revokeContractWritePermission

sion

Query

Query

Query

Query

Grant
Grant

Grant

Grant

Grant

the current node version.

nodelId list for observer nodes.
the pbft view of node.

peers currently connected to the

pending transactions.

pending transactions size.

nodeId list for sealer nodes.

sync status.

a system config value by key.
system config value by key.

total transaction count.
information about a transaction by,
information about a transaction by,
information about a transaction
the receipt of a transaction by,
the transaction and transaction

the receipt and transaction receipt,

permission for CNS by address.
permission for deploy contract and,

permission for node configuration,
permission for system configuration,

permission for user table by table

Provide help information.

Query
Query

Query
Query
Query
Query
Quit c
Remove
Revoke
Revoke
Revoke
Revoke
Revoke
Query

Grant

Revoke

permission information for CNS.
permission information for deploy,,

permission information for node
permission information for system,
permission for user table
CNS information by contract name,
onsole.
a node.
permission for CNS by address.
permission for deploy contract and,
permission for node configuration
permission for system
permission for user table by table
the account list which have write

the account the contract write

the account the contract write

nermi
pae

(continues on next page)

98

Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

grantContractStatusManager
getContractStatus
listContractStatusManager
grantCommitteeMember
revokeCommitteeMember
listCommitteeMembers
grantOperator
revokeOperator
listOperators
updateThreshold
queryThreshold
updateCommitteeMemberWeight
queryCommitteeMemberWeight
freezeAccount

Grant contract authorization to the user.
Get the status of the contract.

List the authorization of the contract.
Grant the account committee member
Revoke the account from committee member
List all committee members

Grant the account operator

Revoke the operator

List all operators

Update the threshold

Query the threshold

Update the committee member weight

Query the committee member weight

Freeze the account.

unfreezeAccount Unfreeze the account.
getAccountStatus GetAccountStatus of the account.
freezeContract Freeze the contract.
unfreezeContract Unfreeze the contract.

switch (s) Switch to a specific group by group ID.
[create sqgl] Create table by sqgl.

[delete sqgl] Remove records by sqgl.

[insert sqgl] Insert records by sqgl.

[select sqgl] Select records by sqgl.

[update sqgl] Update records by sqgl.

**Note: **

* help shows the meaning of each command: command and command description

* for instructions on how to use specific commands, enter the command -h or —help to view them. E.g:

[group:1]> getBlockByNumber -h

Query information about a block by block number.
Usage: getBlockByNumber blockNumber [boolean]

blockNumber -- Integer of a block number,

from 0 to 2147483647.

boolean —-- (optional) If true it returns the full transaction objects, if false,

—only the hashes of the transactions.

switch

To run switch or s to switch to the specified group. The group number is displayed in front of the command

prompt.

[group:1]> switch 2
Switched to group 2.

[group:2]1>

**Note: ** For the group that needs to be switched, make sure that the information of the group is configured in
applicationContext .xml (the initial state of this configuration file only provides the group 1 configuration)
inthe console/conf directory, the configured node ID and port in the group are correct, and the node is running
normally.

getBlockNumber

To run getBlockNumber to view block number.

5.8. Console 99

FISCO BCOS EN Documentation, Release v2.5.0

[group:1]> getBlockNumber
90

getSealerList

To run getSealerList to view the list of consensus nodes.

[group:1]> getSealerList
[

—

—

]

—0c0bbd25152d40969d3d3cee3431£a28287e07c££2330d£3258782d3008b876d146ddab97eab42796495bfbb281591f
—10b3az2d4b775ec7f£3c2c9e8dc97fa52beb8caab9c34d026db9b95a72acldlclad551c67c2b7£dc34177857eada75836

—622af37b2bd29c60ae8£15d467b67cl0a7febebl3e5c63fdc27alee8066707a25afa3aalebba3b802d3aeSe26de9d5at

getObserverList

To run getSealerList to view the list of observer nodes.

[group:1]> getObserverList
[

]

—037c255c06161711b6234b8c0960a6979e£039374ccc8b723afea2l07cbal3432dbbc837a714b7da20111£74d5a24e91

getNodelDList

To run getNodelDList to view the nodes and the list of nodelds connected to p2p nodes.

[group:1]> getNodeIDList
[

—41285429582¢cbfe6eed501806391d2825894b3696£801e945176c7eb2379%9alecf03b36b027d72£480e89d15bacd4346

—

—87774114e4a496c68£2482b30d221fa2f7b5278876da72£3d0a75695b81e2591c1939fc0d3fadbl5ccB59¢c997bafce

—

—29c34347a190clec0c4507cbeedbabbcd4d7a8f9f54ef26da616e81185c0afllal8ceadeacb74cfofol

—

—d5b3a9782cbaca271c9642aea391415d8b258e3a6d92082e59cc5b813cal23745440792ae0b29f4962

20292b24bc5d

£568£8ad58b7

getPbftView

To run getPbftView to view the pbft viewgraph.

[group:1]1> getPbftView
2730

100 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

getConsensusStatus

To run getConsensusStatus to view the consensus status.

[group:1]> getConsensusStatus
[
{
"id": 1,
"jsonrpc": "2.0",
"result": [
{
"accountType": 1,
"allowFutureBlocks": true,
"cfgErr": false,
"connectedNodes": 3,
"consensusedBlockNumber": 38207,
"currentView": 54477,
"groupId": 1,
"highestblockHash":
—"0x19a16e8833e671aall431de589c866a6442ca6c8548bad40ad44£50889cd785069",
"highestblockNumber": 38206,

"leaderFailed": false,
"max_faulty_leader": 1,
"nodeId":

—"£72648fel65dal7a889%ece08caleb7862cb979c4e3661d6a77bcc2de85cb766af5d299fec8ad337eeddl42dcal2bal

oon
1,

"nodeNum": 4,
"node_index": 3,
"omitEmptyBlock": true,
"protocolId": 65544,
"sealer.0":

—"6a99f357ecf8a001e03b68aba66f68398ee08£f3ce0f0147e777ec7799536%9aac470b8c9f0£85f91ebp58a98475764b

"
",

"sealer.1l":

—"8a453£1328c80b908b2d02ba25adcab6341bl6b16846d84£903c4£4912728c6aael050cedf24cd9c13¢010ce922d339

"
",

"sealer.2":

—"ed483837e73eelb56073b178f5ac0896fa328fc0ed418ae3e268d9e9109721421ec48d68£28d6525642868b40dd265

"
",

"sealer.3":

—"f72648fel65dal7a889%bece08cale57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4d4337eeddl42dcal2bal

"
",

"toView": 54477
by
[

"nodeId":
—"6a99f357ecf8a001e03b68aba66f68398ee08£3ce0£f0147e777ec77995369%9aac470b8c9f0£85f91eb

"
",

"view": 54474
s
{

"nodeId":

58a98475764b

—"8a453£f1328c80b908b2d02ba25adca6341bl6bl6846d84£903c4£4912728cbaael050cedf24cd9cl3¢010ce922d339

"
",

"view": 54475
}s
{

"nodeId":

—"ed483837e73eelb56073b178£5ac0896fa328fc0ed418ae3e268d9e9109721421ec48d68£28d6525642868b40dd265

"
",

"view": 54476

(continues on next page)

5.8. Console 101

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

bo
{
"nodeId":

—"f72648fel65dal7a889%bece08cale57862cb979c4e3661d6a77bcc2de85cb766af5d299fecB8a4d4337eq

("
—

"view": 54477

pddl42dcal26al

getSyncStatus

To run getSyncStatus to view the synchronization status.

[group:1]> getSyncStatus
{
"blockNumber":5,
"genesisHash":
—"0xeccad527494909d25996£7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
"isSyncing":false,
"latestHash":
—"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9%eb0678d03d7acceld",
"nodeId":

—"cf93054cf524f51c9fede9a76a50218aaa7a2ca6e58£f6£5634£9¢c2884d2e972486c7fel1d244d4b49c6148clcb524bce

("
o

"peers": [
{
"blockNumber":5,
"genesisHash":
—"0xeccad5274949b9d25996f7a96b89c0ac5c099%9eb9%b72cc00d65bc6ef09f7bd10b",
"latestHash":
—"0xpb99703130e24702d3b580111b0cf4e39ff60ac530561dd9%eb0678d03d7acceld",
"nodeId":
—"0471101bcf033cd9%e0cbdbeef76cl44e6ef£90a7a0b1847b5976£8ba32b2516c0528338060a4599fchH
o
}I
{
"blockNumber":5,
"genesisHash":
—"0xeccad5274949p9d25996£7a96b89c0ac5c099eb9b72cc00d65bc6ef09£f7bd10b",
"latestHash":
—"0xp99703130e24702d3b580111b0cf4e39f£60ac530561dd9%eb0678d03d7acceld",
"nodeId":
—"2b08375e6£8762410b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e

"
—

s
{
"blockNumber":5,
"genesisHash":
—"0xeccad5274949p9d25996£f7a96b89c0ac5c099%9eb9b72cc00d65bc6ef09£f7bd10b",
"latestHash":
—"0xb99703130e24702d3b580111b0cf4e39f£60ac530561dd9%eb0678d03d7acceld",
"nodeId":

e3bafeel88bc.

025180£9d966.

—"edlc85b815164b31e895d3f4fc0b6e3f0a0622561ec58al0cc8£3757a73621292d88072bf853ac52f(a%a%bbbl0ab4!

n
—

1,
"protocolId":265,

(continues on next page)

102 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

"txPoolSize":"0O"

getNodeVersion

To run getNodeVersion to view the node version.

[group:1]> getNodeVersion
{
"Build Time":"20200619 06:32:10",
"Build Type":"Linux/clang/Release",
"Chain Id":"1",
"FISCO-BCOS Version":"2.5.0",
"Git Branch":"HEAD",
"Git Commit Hash":"72c6d770e5cf0£f4197162d0e26005ec03d30fcfe”,
"Supported Version":"2.5.0"

getPeers

To run getPeers to view the peers of node.

[group:1]> getPeers
[

"IPAndPort":"127.0.0.1:50723",

51e12004c6bf

§8d0b5993464c

6c0b968bd5e9.

"nodeId":
—"8718579%9e9a6fee647b3d7404d59d66749862aeddef22eb6bbabaafelaf6fcl28fc33ed5a%al05abdda
"Topic": [
]
by
{
"IPAndPort":"127.0.0.1:50719",
"nodeId":
—"697e81e512cffc55fc9c506104fb888a%ecfde29ecabfefbbb334b0ebbbfcdef8fabb60eb614a0f2bel]
"Topic": [
]
b
{
"IPAndPort":"127.0.0.1:30304",
"nodeId":
—"8fc9661baal057034f10efacfd8be3b7984e2f2e902£f83c5c4e0e8a60804341426ace51492ffae087d
"Topic": [
]
}
]
getGroupPeers

To run getGroupPeers to view the list of consensus and observer node of the group where the node is located.

5.8. Console 103

FISCO BCOS EN Documentation, Release v2.5.0

[group:1]> getGroupPeers
[

—~cf93054c£f524f51c9fedef9a76a50218aaa’7a2cabe58£6£5634£9c2884d2e972486c7£feld244d4b49c6148clcb524bec

—

—edlc85b815164b31e895d3£f4fc0b6e3£0a0622561ec58al0cc8£3757a73621292d88072b£853ac52£0

—

—-0471101bcf033cd9%e0cbdbeef76cl44e6eff90a7a0bl847b5976£8ba32b2516c0528338060a4599£fc5¢

—

—2b08375e6£876241b2ald495cd560bd8e43265£57dc9ed07254616ea88e371dfabd40d9%9a702eadfdbe
]

1 9a9bbbl0a54b

p3bafeel88bca

25180£9d966a

getGrouplList

To run getGroupList to view the list of group:

[group:1]> getGroupList
[1]

getBlockByHash

To run getBlockByHash to view block information according to the block hash. Parameter:
* Block hash: The hash starting with Ox.

 Transaction sign: to set it false by default, the transaction in the block only displays the hash. To set it true,
it displays the transaction specific information.

[group:1]> getBlockByHash,
—0xfb6afbccl3ec9ebdac2c2829c2607e95ea0falbe914callb7436b2d3c5£1842855
{

"extraData": [

]I

"gasLimit":"0x0",

"gasUsed":"0x0",

"hash":"Oxfoafbcc3ec9ebdac2c2829c2607e95ealfalbe914call57436b2d3c5£1842855",

"logsBloom":
—"0x000

:"
—

"number":"0x1",

"parentHash":
—"0xeccad5274949p9d25996£7a96b89c0ac5c099eb9b72cc00d65bc6ef09£7bd10b",

"sealer":"0x0",

"sealerList": [

000000000000

—"0471101bcf033cd%0cbdbeef76cl44e6eff90a7a0bl847b5976£8ba32b2516c0528338060a4599fche3bafeel88bc

"
",

—"2b08375e6£876241b2a1d495cd560bd8e43265£57dc9ed07254616ea88e371dfa6d40d%a702eadfd5¢025180£9d966.

"
",

—"cf93054cf524£f51c9%fede9a776a50218aaa’7a2ca6e58£6£5634£9c2884d2e972486¢c7£feld244d4b49c6148clcb524bc

"
",

—"edlc850815164b31e895d3£f4£fc0b6e3£0a0622561ec58al10cc8£3757a73621292d88072b£f853achb2f

n
—

(continues on next page)

104 Chapter 5. Manual (Revision in progress)

a9%a9bbbl0ab4]

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

1,
"stateRoot":"0x9711819153£7397ec66a78b02624£70a343b49c60bc2f21a77b977b0ed91cef9

"timestamp":"0x1692£119c84",
"transactions": [
"0xal4638d47cc679cfbeeb7f36a6d2a30eab6cb8dcf0938719ff45023a7a8edb5d"
]I
"transactionsRoot":
—"0x516787£85980a86£fd04b0e9ce82al1a75950db866e8cdf543c2cae3ed4ab51d91b7"
}
[group:1]> getBlockByHash,
—0xfoafbcc3ec9ebdac2c2829c2607e95ealfalbe914call57436b2d3c5£1842855 true
{

"extraData": [

]I

"gasLimit":"0x0",

"gasUsed":"0x0",

"hash":"Oxfoafbcc3ec9ebd4ac2c2829c2607e95ealfalbe914callb57436b2d3c5£1842855",

"logsBloom":
—"0x000

o
— ",

"number":"0x1",

"parentHash":
—"0xeccad5274949p9d25996£7a96b89c0ac5c099eb9b72cc00d65bc6ef09£7bd10b",

"sealer":"0x0",

"sealerList": [

000000000000

—"0471101bcf033cd%0cbdbeef76cl44e6eff90a7a0bl847b5976£8ba32b2516c0528338060a4599fche3bafeel88bc

"
",

—"2b08375e6£876241b2a1d495cd560bd8ed43265£57dc9ed07254616ea88e371dfa6d40d%a702eadfd5g

"
",

—"cf93054cf524f51c9fede9%9a76a50218aaa7a2cabe58£6£5634£9c2884d2e972486c7feld244d4b49c

"
",

—"edlc85b815164b31e895d3£f4fc0b6e3£f0a0622561ec58al0cc8£3757a73621292d88072bf853ac52f

n
—

1,
"stateRoot":"0x9711819153£7397ec66a78b02624£70a343b49c60bc2f21a77b977b0ed91cef9

"
",

"timestamp":"0x1692£f119c84",
"transactions": [
{
"blockHash":
—"0Oxféeafbcc3ec9ebdac2c2829c2607e95ealfalbe914call57436b2d3c5£1842855",
"blockNumber":"0x1",
"from":"0x7234c32327795e4e612164e3442cfae0d445b%ad",
"gas":"0x1c9c380",
"gasPrice":"0x1",
"hash":
—"0xal4638d47cc679cfbeeb7f36a6d2a30ea56chb8dcf0938719f£f45023a7a8edb5d",
"input":
—"0x608060405234801561001057600080fd50b506040805190810160405280600d81526020017f48656

"
",

"nonce":
—"0x3443a1391¢c9¢c29f751e8350304efb310850b8afbaa7738f5e89ddfce79bld6",

"to":null,

"transactionIndex":"0x0",

"value":"0x0"

2025180£9d966.

b148clcb524bc

a9a9%bbbl0ab4!

r6cof2c20576f

(continues on next page)

5.8. Console 105

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

I

"transactionsRoot":
—"0x516787£85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"

}

getBlockByNumber

To run getBlockByNumber to view block information according to the block number. Parameter:

* Block number: decimal integer.

 Transaction sign: to set it false by default, the transaction in the block only displays the hash. To set it true,
it displays the transaction specific information.

[group:1]> getBlockByNumber 1
{

"extraData": [

]I

"gasLimit":"0x0",

"gasUsed":"0x0",

"hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95eal0falbe914call57436b2d3c5£1842855",

"logsBloom":
—"0x000

‘—>"l
"number":"0x1",
"parentHash":
—"0xeccadb5274949b9d25996£f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
"sealer":"0x0",

"sealerList": [

—"0471101bcf033cd9%e0cbdbeef76cl44e6ef£90a7a0b184705976£8ba32b2516c0528338060a4599fc

"
",

—"2b08375e6£876241b2a1d495cd560bd8e43265£57dc9ed07254616ea88e371dfa6d40d%a702eadfd5sg

"
",

—"cf93054cf524£f51c9fede9a76a50218aaa7a2ca6eb58f6£5634£9c2884d2e972486¢c7feld244d4b49c

"
",

—"edlc85b815164b31e895d3£f4£fc0b6e3£f0a0622561ec58al0cc8£3757a73621292d88072bf853ac52f
1,
"stateRoot":"0x9711819153£7397ec66a78b02624£70a343b49c60bc2f21a77b977b0ed91cef9

"timestamp":"0x1692£119c84",

"transactions": [
"O0xald638d47cc679cfbeeb7f36a6d2a30ea56ch8dcf0938719ff45023a7a8edb5d"

1,
"transactionsRoot":
—"0x516787£85980a86fd04b0e9ce82ala75950db866e8cdf543c2cae3ed4a51d91b7"

}

000000000000

be3bafeel88bc

2025180£9d966.

b148clcb524bc

a%a9%bbbl0a54]

getBlockHashByNumber

To run getBlockHashByNumber to get hash through block number Parameter:

* Block number: decimal integer.

106 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

[group:1]> getBlockHashByNumber 1
Oxfb6afbcc3ec9ebd4ac2c2829c2607e95eal0falbe914call57436b2d3c5£1842855

getTransactionByHash

To run getTransactionByHash to check the transaction information through transaction hash. Parameter:

* Transaction hash: the transaction hash starting with Ox.

[group:1]> getTransactionByHash
—0xed82e2cda98db8614677abalfa8a795820bd7£68a5919a2£85018ba8cl0952ac
{
"blockHash":
—"0x77e5b6d799%edabaecaeb54acS5cea9baacdof8e’7ace33531d40c7ed65192del 02",
"blockNumber":"0x5a",
"from":"0x7a5b31b49c6e944e9e1768785blbc9a9%6¢cealcl7",
"gas":"0x1c9c380",
"gasPrice":"0x1",
"hash":"0xed82e2cda98db8614677abalfa8a795820bd7£68a5919a2f85018ba8cl0952ac

"input":
—"0x10009562616c696365006a6£726

"nonce":"0x18711fff2ea68dc8b8dced4a3d3845c62a0630766a448bd%453a9127efe6f9e5
"to":"0x738eedd873bb9722173194ab9%990c5b9%ab6c0beb25",

"transactionIndex":"0x0",
"value":"0x0"

000000000000

getTransactionByBlockHashAndIndex
To run getTransactionByBlockHashAndIndex to inquire transaction information through block hash and transac-
tion index. Parameter:

* Block hash: the transaction hash starting with Ox.

* Transaction index: decimal integer.

[group:1]> getTransactionByBlockHashAndIndex,
—0x77e5b6d799%edabaecaeb54acScea9baacd6f8e7ace33531d40c7ed65192delf02 O
{
"blockHash":
—"0x77e5b6d79%edabaecaeb54ac5cea9baacdbf8e7ace33531d40c7ed65192del £f02",
"blockNumber":"0x5a",
"from":"0x7a5b31b49c6e944e9e1768785blbc%a9%6cealcl7",
"gas":"0x1c9c380",
"gasPrice":"0x1",
"hash":"0xed82e2cda98db8614677abalfa8a795820bd7£68a5919a2£f85018ba8cl0952ac

"input":
—"0x10009562616c696365006a6£726

"
",

"nonce":"0x18711fff2ea68dc8b8dced4a3d3845c62a0630766a448bd9453a9127efebf9eb

"to":"0x738eedd873bb9722173194ab990c5b9%a6c0beb25",
"transactionIndex":"0x0",
"value":"0x0"

»p000000000000

5.8. Console 107

FISCO BCOS EN Documentation, Release v2.5.0

getTransactionByBlockNumberAndindex
To run getTransactionByBlockNumberAndIndex to inquire transaction information through block number and
transaction index. Parameter:

* Block number: decimal integer.

 Transaction index: decimal integer.

[group:1]> getTransactionByBlockNumberAndIndex 2 0
{
"blockHash":
—"0x77e5b6d799%edabaecaeb54acS5cea9baacdo6f8e’7ace33531d40c7ed65192del f02",
"blockNumber":"0x5a",
"from":"0x7a5b31b49c6e944e9e1768785blbc%a9%6cealcl7",
"gas":"0x1c9c380",
"gasPrice":"0x1",
"hash":"0xed82e2cda98db8614677abalfa8a795820bd7£68a5919a2£85018ba8cl0952ac

"input":
—"0x10009562616c696365006a6£726
mw
—

"nonce":"0x18711fff2ea68dc8b8dced4a3d3845c62a0630766a448bd9453a9127efe6f9eb

"to":"0x738eedd873bb9722173194ab990c5b9%a6c0beb25",
"transactionIndex":"0x0",
"value":"0x0"

000000000000

getTransactionReceipt

To run getTransactionReceipt to inquire transaction receipt through transaction hash. Parameter:
* Transaction hash: the transaction hash starting with 0x.

 contract name: Optional. The contract name generated by transaction receipt. To use this parameter can
parse and output the event log in the transaction receipt.

* event name: optional. Event Name. To specify this parameter to output the specified event log information.

* event index number: optional. Event index. To specify this parameter to output the event log information of
the specified event index location.

[group:1]> getTransactionReceipt,
—0x6393c74681£14ca3972575188c2d2¢c60d7£3£fb08623315db£6820£fc9dccllocl

"blockHash":"0x68alfd47cad465acc89edbc24115d1b435cb39fal0def53e8d0ad8090cfl827catd

"blockNumber":"0x5",
"contractAddress":"0x00™,
"from":"Oxcd44eT7a8adae20d6afaad3221c6120b5ele9f9a72",
"gasUsed":"0x8beb",
"logs": [
{
"address":"0xd653139b%abffc3fe07573e7bacdfd35210b5576",
"data":
—"0x0001",
"topics": [

"0x66£7705280112a4d1145399e0414adc43a2d6974b487710£417edcf7d4a39d71

(continues on next page)

108 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

"logsBloom":
—"0x000400000000000

"output":"0x0001L",

"status":"0x0",

"to":"0xd653139%%abffc3fe07573e7bacdfd35210b5576",

"transactionHash":
—"0x6393c74681f14ca3972575188¢c2d2¢c60d7£3fb08623315dbf6820fc9dcc119cl™,

"transactionIndex":"0x0"

[group:1]> getTransactionReceipt,
—0x6393c74681£14ca3972575188c2d2c60d7£3fb08623315dbf6820fc9dccll19cl TableTest

"blockHash":"0x68alf47cad465acc89edbc24115d1b435cb39fal0def53e8d0ad8090cfl827catfd

"blockNumber":"0x5",
"contractAddress":"0x00™,
"from":"Oxcd44e7a8adae20d6afaad3221c6120b5ele9f9a72",
"gasUsed":"0x8beb",
"logs": [
{
"address":"0xd65313909%abffc3fe07573e7bacdfd35210b5576",
"data":
—"0x0001",
"topics": [
"0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71

1,
"logsBloom":
—"0x000400000000000

om
",

"output":"0x0001 ",

"status":"0x0",

"to":"0xd653139%0%abffc3fe07573e7bacdfd35210b5576",

"transactionHash":
—"0x6393c74681f14ca3972575188c2d2c60d7£3fb08623315dbf6820fc9dccl119cl™,

"transactionIndex":"0x0"

ym——————————

Event logs

InsertResult index: 0
count = 1

[group:1]> getTransactionReceipt,
—0x6393c74681£14ca3972575188c2d2c60d7£3fb08623315dbf6820£fc9dccl19cl TableTest,,
—InsertResult

"blockHash":"0x68alf47cad465acc89edbc24115d1b435cb39fal0def53e8d0ad8090cfl827cafd

"blockNumber":"0x5",
"contractAddress":"0x00™,
"from":"Oxc44eT7a8adae20d6afaad3221c6120b5ele9f9a72",
"gasUsed":"0x8beb",

(continues on next page)

5.8. Console 109

000000000000

000000000000

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

"logs": [
{
"address":"0xd65313909%abffc3fe07573e7bacdfd35210b5576",
"data":
—"0x0001",
"topics": [
"0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71

I
"logsBloom":
—"0x000400000000000

("
o

"output":"0x0001",

"status":"0x0",

"to":"0xd65313909%abffc3fe07573e7bacdfd35210b5576",

"transactionHash":
—"0x6393¢c74681f14ca3972575188¢c2d2¢c60d7f3fb08623315dbf6820fc9dccl119cl™,

"transactionIndex":"0x0"

InsertResult index: 0
count = 1

[group:1]> getTransactionReceipt,
—0x6393c74681f14ca3972575188c2d2c60d7£3fb08623315dbf6820fc9dccl19cl TableTest,,
—InsertResult 0

"blockHash":"0x68alfd47cad465acc89edbc24115d1b435cb39fal0def53e8d0ad8090cfl827catd

"blockNumber":"0x5",
"contractAddress":"0x00™,
"from":"Oxcd44eT7a8adae20d6afaad3221c6120b5ele9f9a72",
"gasUsed":"0x8beb",
"logs": [
{
"address":"0xd653139b%abffc3fe07573e7bacdfd35210b5576",
"data":
—"0x0001",
"topics": [
"0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71

1,
"logsBloom":
—"0x000400000000000

om
—

"output":"0x0001 ",

"status":"0x0",

"to":"0xd653139%09%abffc3fe07573e7bacdfd35210b5576",

"transactionHash":
—"0x6393¢c74681f14ca3972575188¢c2d2¢c60d7f3fb08623315dbf6820fc9dccl119cl",

"transactionIndex":"0x0"

(continues on next page)

110 Chapter 5. Manual (Revision in progress)

000000000000

000000000000

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

e
InsertResult index: 0
count = 1

getPendingTransactions

To run getPendingTransactions to inquire the transactions waiting to be processed.

[group:1]> getPendingTransactions

[]

getPendingTxSize

To run getPendingTxSize to inquire the number of transactions waiting to be processed.

[group:1]> getPendingTxSize
0

getCode

To run getCode to inquire contract code according contract address. Parameter:

 Contract address: The contract address starting with Ox(To deploy contract can get contract address).

[group:1]> getCode 0x97b8cl19598fd78laaeb53a1957e£f9c8acc59£705
0x60606040526000357c01009004631%

FEEEff££16806

getTotalTransactionCount

To run getTotal TransactionCount to inquire the current block number and the total number of transaction.

[group:1]> getTotalTransactionCount
{

"blockNumber":1,

"txSum":1,

"failedTxSum":0

deploy
To run deploy to deploy contract. (By default, HelloWorld contract and TableTest.sol are provided for example)
Parameter:

 Contract name: deployment contract name (can be suffixed with .sol). It can name as either HelloWorld or
HelloWorld.sol.

5.8. Console 111

FISCO BCOS EN Documentation, Release v2.5.0

To deploy HelloWorld contract
[group:1]> deploy HelloWorld.sol
contract address:0xb3c223fc0bf6646959f254ac4ed4a’7e355b50a344

To deploy TableTest contract
[group:1]> deploy TableTest.sol
contract address:0x3554a56€a2905f366c345bd44fa374757£fb469%6a

Note:

* For deploying a user-written contract, we just need to place the solidity contract file in the contracts/
solidity/ directory of the console root, and then deploy it. Press the tab key to search for the contract
name in the contracts/solidity directory.

* If the contract need to be deployed refers to other contracts or libraries, the reference format is import ".
/XXX .sol";. The related contracts and libraries are placed in the contracts/solidity/ directory.

* If contract references the library library, the name of library file must start with Lib string to distinguish
between the normal contract and the library file. Library files cannot be deployed and called separately.

o **Because FISCO BCOS has removed the transfer payment logic of Ethereum, the solidity contract does
not support using payable keyword. This keyword will cause the Java contract file converted by solidity
contract to fail at compilation. **

getDeployLog

Run getDeployLog to query the log information of the contract deployed by current console in the group. The log
information includes the time of deployment contract, the group ID, the contract name, and the contract address.
parameter:

* Log number: optional. To return the latest log information according to the expected value entered. When
the actual number is less than the expected value, it returns by the actual number. When the expected value
is not given, it returns by the latest 20 log information by default.

[group:1]> getDeployLog 2

2019-05-26 08:37:03 [group:1] HelloWorld
—0xc0ce097a5757e2b6e189%9aa70c7d55770aced7767
2019-05-26 08:37:45 [group:1] TableTest
—0xd65313909%abffc3fe07573e7bacdfd35210b5576

[group:1]> getDeployLog 1

2019-05-26 08:37:45 [group:1] TableTest
—0xd653139b9%abffc3fe07573e7bacdfd35210b5576

Note: If you want to see all the deployment contract log information, please check the deploylog. txt filein
the console directory. The file only stores the log records of the last 10,000 deployment contracts.

call

To run call to call contract. Parameter:
* Contract name: the contract name of the deployment (can be suffixed with .sol).

* Contract address: the address obtained by the deployment contract. The contract address can omit the prefix
0. For example, 0x000ac78 can be abbreviated as Oxac78.

¢ Contract interface name: the called interface name.

e Parameter: determined by contract interface parameters.

112 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

**Parameters are separated by spaces. The string and byte type parameters need to be enclosed in double quotes;
array parameters need to be enclosed in brackets, such as [1,2,3]; array is a string or byte type and needs to be
enclosed in double quotation marks, such as [“alice”, “bob’’]. Note that there are no spaces in the array parameters;
boolean types are true or false. **

T T text

To call the get interface of HelloWorld to get the name string

[group:1]> call HelloWorld.sol 0xc0ce097a5757e2b6el89%aa70c7d55770aced7767 get
Hello, World!

To call the set interface of HelloWorld to set the name string

[group:1]> call HelloWorld.sol 0xc0ce097a5757e2b6el8%aa70c7d55770aced47767 set
—"Hello, FISCO BCOS"

transaction hash:0xa7c7d5e£8d9205celb228belfe90£f8ad70eeb6a5d93d3£526£30d8£431cble70

To call the get interface of HelloWorld to get the name string for checking_
—whether the settings take effect

[group:1]> call HelloWorld.sol 0xc0ce097a5757e2b6el18%aa70c7d55770aced47767 get
Hello, FISCO BCOS

To call the insert interface of TableTest to insert the record, the fields are
—name, item_id, item_name

[group:1]> call TableTest.sol 0xd653139b9%abffc3fe07573e7bacdfd35210b5576 insert
—"fruit" 1 "apple"

transaction hash:0x6393c74681£14ca3972575188c2d2c60d7£3£fb08623315dbf6820fc9dccllocl

InsertResult index: 0
count = 1

To call TableTest's select interface to inquiry records

[group:1]> call TableTest.sol 0xd653139b9%abffc3fe07573e7bacdfd35210b5576 select
—"fruit"

[[fruit], [1], [apple]ll

Note: TableTest.sol contract codeReference here o

deployByCNS
Run deployByCNS and deploy the contract with CNS. Contracts deployed with CNS can be called directly with
the contract name.
Parameter:
* Contract name: deployable contract name.

» Contract version number: deployable contract version number(the length cannot exceed 40).

To deploy HellowWorld contract 1.0 version
[group:1]> deployByCNS HelloWorld.sol 1.0
contract address:0x3554a56€a2905£366c345bd44fa374757fb469%6a

To deploy HellowWorld contract 2.0 version
[group:1]> deployByCNS HelloWorld.sol 2.0
contract address:0x07625453fb4a6459cbfl4f5aadd574cae0£17d92

To deploy TableTest contract

(continues on next page)

5.8. Console 113

smart_contract.html#solidity

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

[group:1]> deployByCNS TableTest.sol 1.0
contract address:0x0b33d383e8e93c7¢c8083963a4ac4a58b214684a8

Note:

» For deploying the contracts compiled by users only needs to place the solidity contract file in the
contracts/solidity/ directory of the console root and to deploy it. Press tab key to search for

the contract name in the contracts/solidity/ directory.

« If the contract to be deployed references other contracts or libraries, the reference format is import "./
XXX.sol";. The related contract and library are placed in the contracts/solidity/ directory.

o **Because FISCO BCOS has removed the transfer payment logic of Ethereum, the solidity contract does
not support using payable keyword. This keyword will cause the Java contract file converted by solidity

contract to fail at compilation. **

queryCNS

Run queryCNS and query the CNS table record information (the mapping of contract name and contract address)

according to the contract name and contract version number (optional parameter).
Parameter:
 Contract name: deployable contract name.

* Contract version number: (optional) deployable contract version number.

[group:1]> queryCNS HelloWorld.sol

callByCNS

To run deployByCNS and deploy the contract with CNS. Parameter:

* Contract name and contract version number: The contract name and contract version number are separated
by colon, such as HelloWorld:1.0 or HelloWorld.sol:1.0. When the contract version number is

omitted like HelloWorld or HelloWorld. sol, the latest version of the contract is called.

¢ Contract interface name: The called contract interface name.

» Parameter: is determined by the parameter of contract interface. The parameters are separated by spaces,
where the string and byte type parameters need to be enclosed in double quotation marks; the array
parameters need to be enclosed in brackets, such as [1, 2, 3]. The array is a string or byte type with

double quotation marks such as [“alice’, “bob”’]; the boolean type is true or false.

114 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

To call the HelloWorld contract 1.0 version to set the name string by the set |
—interface

[group:1]> callByCNS HelloWorld:1.0 set "Hello,CNS"

transaction hash:0x80bb37cc8de2e25f6alcdcbbb4a0labbb5628082f8dadc48eflbbeclfbld28b2d

To call the HelloWorld contract 2.0 version to set the name string by the set
—interface

[group:1]> callByCNS HelloWorld:2.0 set "Hello,CNS2"

transaction hash:0x43000d14040£f0c67ac080d01790949906885d4a1495d3cfdla79ffb5£2945£64

To call the HelloWorld contract 1.0 version to get the name string by the get,
—interface

[group:1]> callByCNS HelloWorld:1.0 get

Hello, CNS

To call the HelloWorld contract 2.0 version to get the name string by the get
—interface

[group:1]> callByCNS HelloWorld get

Hello, CNS2

addSealer

To run addSealer to add the node as a consensus node. Parameter:

¢ node’s nodeld

[group:1]> addSealer,
—ea2cab519148cafc3e92c8d9a8572b41ea2£62d0d19e99273eel8cccd34ab50079%p4ec82fe5f4ae51bd
{

"code":0,

"msg":"success"

addObserver

To run addObserver to add the node as an observed node. Parameter:

¢ node’s nodeld

[group:1]> addObserver,,
—ea2cabl9148cafc3e92c8d9%9a8572b41ea2£62d0d19e99273eel8cccd34ab50079%p4ec82fe5f4ae51lbd
{

"code":0,
"msg":"success"
}
removeNode

To run removeNode to exit the node. The exit node can be added as a consensus node by the addSealer command
or can be added as an observation node by the addObserver command. Parameter:

¢ node’s nodeld

[group:1]> removeNode,
—ea2cab519148cafc3e92c8d9a8572b41ea2£62d0d19e99273eel18cccd34ab50079%b4ec82fe5f4ae51bd
{

"code":0,

"msg":"success"

5.8. Console 115

5dd788811c97

5dd788811c97

5dd788811c97

FISCO BCOS EN Documentation, Release v2.5.0

setSystemConfigByKey

To run setSystemConfigByKey to set the system configuration in key-value pairs. The currently sys-
tem configuration supports tx_count_limit, tx_gas_limit, rpbft_epoch_sealer_num and
rpbft_epoch_block_num. The key name of these two configuration can be complemented by the tab key:

* tx_count_limit: block maximum number of packaged transactions
* tx_gas_limit: The maximum number of gas allowed to be consumed

* rpbft_epoch_sealer_num: rPBFT system configuration, the number of consensus nodes selected in a con-
sensus epoch

 rpbft_epoch_block_num: rPBFT system configuration, number of blocks generated in one consensus epoch
Parameters:
* key

e value

[group:1]> setSystemConfigByKey tx_count_limit 100
{

"code":0,
"msg":"success"
}
getSystemConfigByKey

To run getSystemConfigByKe to inquire the value of the system configuration according to the key. Parameter:

* key

[group:1]> getSystemConfigByKey tx_count_limit
100

grantPermissionManager

Run grantPermissionManager to grant the account’s chain administrator privileges. parameter:

e account address

[group:1]> grantPermissionManager 0xc0dOe6ccc0b44cl12196266548becd4a3616160e7d
{

"code":0,

"msg":"success"

**Note: For an example of the using permission control related commands, refer to Permission Control Manual
Document. **

listPermissionManager

To run listPermissionManager to inquire the list of permission records with administrative privileges.

[group:1]> listPermissionManager

address enable_num

(continues on next page)

116 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

| O0xc0dOebccc0bd44cl2196266548becd4al3616160e7d | 2 .

revokePermissionManager

To run revokePermissionManager to revoke the permission management of the external account address. parame-

ter:

¢ account address

[group:1]> revokePermissionManager Oxc0dOe6ccc0b44cl12196266548becd4al3616160e7d
{

"code":0,

"msg":"success"

grantUserTableManager

Run grantUserTableManager to grant the account to write to the user table.
parameter:
¢ table name

e account address

[group:1]> grantUserTableManager t_test 0xc0d0e6ccc0b44cl12196266548becd4al3616160e7d
{

"code":0,

"msg":"success"

listUserTableManager

Run listUserTableManager to query the account’s table that has writing permission to the user table.

parameter:

e table name

[group:1]> listUserTableManager t_test

| 0xc0dOebccc0b44cl2196266548becd4al3blelele’d

revokeUserTableManager

Run revokeUserTableManager to revoke the account’s writing permission from the user table.

parameter:

¢ table name

5.8. Console 117

FISCO BCOS EN Documentation, Release v2.5.0

e account address

[group:1]> revokeUserTableManager t_test 0xc0dOebccc0b44cl2196266548becd4al36l6160e7d
{

"code":0,

"msg":"success"

grantDeployAndCreateManager

Run grantDeployAndCreateManager to grant the account’s permission of deployment contract and user table
creation.

parameter:

¢ account address

[group:1]> grantDeployAndCreateManager 0xc0d0e6ccc0b44cl12196266548bec4a3616160e7d
{
"code":0,

"msg":"success"

listDeployAndCreateManager

Run listDeployAndCreateManager to query the account’s permission of deployment contract and user table cre-
ation.

[group:1]> listDeployAndCreateManager

| O0xc0dOebccc0b44cl2196266548becd4a3616160e7d | 2

revokeDeployAndCreateManager

Run revokeDeployAndCreateManager to revoke the account’s permission of deployment contract and user table
creation.

parameter:

e account address

[group:1]> revokeDeployAndCreateManager 0xc0d0ebccc0b44cl2196266548bec4al3616160e7d
{

"code":0,

"msg":"success"

grantNodeManager

Run grantNodeManager to grant the account’s node management permission.

parameter:

118 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

e account address

[group:1]> grantNodeManager Oxc0dOe6ccc0b44cl2196266548becd4a3616160e7d
{

"code":0,
"msg":"success"
}
listNodeManager

Run the listNodeManager to query the list of accounts that have node management.

[group:1]> listNodeManager

| address | enable_num .
—

| O0xc0dOebccc0bd44cl2196266548becd4al3616160e7d | 2 »
> |

revokeNodeManager

Run revokeNodeManager to revoke the account’s node management permission.
parameter:

e account address

[group:1]> revokeNodeManager 0xc0d0e6ccc0b44cl12196266548bec4a3616160e7d
{
"code":0,

"msg":"success"

grantCNSManager

Run grantCNSManager to grant the account’s permission of using CNS. parameter:

¢ account address

[group:1]> grantCNSManager 0Oxc0d0e6ccc0b44cl2196266548bec4a3616160e7d
{

"code":0,
"msg":"success"
}
listCNSManager

Run listCNSManager to query the list of accounts that have CNS.

[group:1]> listCNSManager

address enable_num

(continues on next page)

5.8. Console 119

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

| O0xc0dOebccc0bd44cl2196266548becd4al3616160e7d | 2

revokeCNSManager

Run revokeCNSManager to revoke the account’s permission of using CNS. parameter:

e account address

[group:1]> revokeCNSManager 0xc0dOe6ccc0b44cl2196266548bec4a3616160e7d
{

"code":0,

"msg":"success"
}
grantSysConfigManager

Run grantSysConfigManager to grant the account’s permission of modifying system parameter. parameter:

e account address

[group:1]> grantSysConfigManager 0xc0dOe6ccc0b44c12196266548becd4a3616160e7d
{

"code":0,
"msg":"success"
}
listSysConfigManager

Run listSysConfigManager to query the list of accounts that have modified system parameters.

[group:1]> listSysConfigManager

| address | enable_num

o
b

Q

o
[oN
o
()

o
Q

Q

Q

o
o
oD
S
Q

it
N
=
<)
o
N
o
I$)
a1
oD
[e°)
o
()

Q

s
©

w
o
=
o)
=
o
o
[0)

—
(o}
N

revokeSysConfigManager

Run revokeSysConfigManager to revoke the account’s permission of modifying system parameter. parameter:

e account address

[group:1]> revokeSysConfigManager 0xc0dOe6ccc0b44cl2196266548becd4a361l6160e7d
{
"code":0,

"msg":"success"

120 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

grantContractWritePermission

Run grantContractWritePermissio to grant the account the contract write permission. parameters:

e contract address

e account address

[group:1]> grantContractWritePermission 0xc0ce097a5757e2b6e189%aa70c7d55770aced7767_,
—0xc0d0ebccc0b44cl12196266548becd4a3616160e7d
{

"code":0,
"msg":"success"

listContractWritePermission

Run listContractWritePermission to query the account list which have write permission of the contract. parame-

ters:

¢ contract address

[group:1]> listContractWritePermission 0xc0ce097a5757e2b6el18%aa70c7d55770aced7767

| address enable_num .

| Oxc0dOebccc0b44cl12196266548becd4al3616160e7d

revokeContractWritePermission

Run revokeContractWritePermission to Revoke the account the contract write permission. parameters:

o BLMILE

e account address

[group:1]> revokeContractWritePermission,
—0xc0ce097a5757e2b6e189%9aa70c7d55770aced 7767,
—0xc0d0ebccc0b44cl2196266548becd4a3616160e7d
{

"code":0,

"msg":"success"

quit

To run quit, q or exit to exit the console.

quit

[create sql]

Run create sql statement to create a user table in mysql statement form.

5.8. Console 121

FISCO BCOS EN Documentation, Release v2.5.0

Create user table t_demo whose primary key is name and other fields are item_id
—and item_name

[group:1]> create table t_demo (name varchar, item_id varchar, item_name varchar,
—primary key (name))

Create 't_demo' Ok.

Note:

* The field types for creating table are all string types. Even if other field types of the database are provided,
the field types have to be set according to the string type.

* The primary key field must be specified. For example, to create a t_demo table with the primary key field
as name.

* The primary key of the table has different concept from the primary key in the relational database. Here, the
value of the primary key is not unique, and the primary key value needs to be passed when the blockchain
underlying platform is handling records.

* You can specify the field as the primary key, but the setting fields such as self-incrementing, non-empty,
indexing, etc do not work.

desc

Run desc statement to query the field information of the table in mysql statement form.

query the field information of the t_demo table. you can view the primary key,,
—name and other field names of the table.

[group:1]> desc t_demo

{
"key" . Hname n ,
"valueFields":"item_id, item_name"

[insert sql]

Run insert sql statement to insert the record in the mysql statement form.

[group:1]> insert into t_demo (name, item_id, item_name) values (fruit, 1, applel)
Insert OK, 1 row affected.

Note:
e must insert a record sql statement with the primary key field value of the table.

* The enter values with punctuation, spaces, or strings containing letters starting with a number requires
double quotation marks, and no more double quotation marks are allowed inside.

[select sql]

Run select sql statement to query the record in mysql statement form.

query the records contain all fields
select » from t_demo where name = fruit
{item_id=1, item_name=applel, name=fruit}
1 row in set.

query the records contain the specified fields
[group:1]> select name, item_id, item_name from t_demo where name = fruit
{name=fruit, item_id=1, item_name=applel}

(continues on next page)

122 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

1 row in set.

insert a new record
[group:1]> insert into t_demo values (fruit, 2, apple2)
Insert OK, 1 row affected.

use the keyword 'and' to connect multiple query condition

[group:1]> select » from t_demo where name = fruit and item_name = apple?2
{item_id=2, item_name=apple2, name=fruit}

1 row in set.

use limit field to query the first line of records. If the offset is not _
—provided, it is 0 by default.

[group:1]> select x from t_demo where name = fruit limit 1

{item_id=1, item_name=applel, name=fruit}

1 row in set.

use limit field to query the second line record. The offset is 1
[group:1]> select x from t_demo where name = fruit limit 1,1
{item_id=2, item_name=apple2, name=fruit}

1 rows in set.

Note:

* For querying the statement recording sql, the primary key field value of the table in the where clause must

be provided.
* The limit field in the relational database can be used. Providing two parameters which are offset and count.
* The where clause only supports the keyword ‘and’. Other keywords like ‘or’, ‘in’, ‘like’, ‘inner’, ‘join’,
‘union’, subquery, multi-table joint query, and etc. are not supported.

* The enter values with punctuation, spaces, or strings containing letters starting with a number requires
double quotation marks, and no more double quotation marks are allowed inside.

[update sql]

Run update sql statement to update the record in mysql statement form.

[group:1]> update t_demo set item_name = orange where name = fruit and item_id =1
Update OK, 1 row affected.

Note:

* For updating the where clause of recording sql statement, the primary key field value of the table in the
where clause must be provided.

* The enter values with punctuation, spaces, or strings containing letters starting with a number requires
double quotation marks, and no more double quotation marks are allowed inside.

[delete sql]

Run delete sql statement to delete the record in mysql statement form.

[group:1]> delete from t_demo where name = fruit and item_id = 1
Remove OK, 1 row affected.

Note:

 For deleting the where clause of recording sql statement, the primary key field value of the table in the
where clause must be provided.

5.8. Console 123

FISCO BCOS EN Documentation, Release v2.5.0

* The enter values with punctuation, spaces, or strings containing letters starting with a number requires
double quotation marks, and no more double quotation marks are allowed inside.

Important: The executing of the freezeContract/unfreeze Contract/grantContractStatusManager commands for
contract management should specify the private key to start the console for permission.This private key is also
the account private key used to deploy the specified contract. So a private key should be specified to launch the
console when deploying the contract.

freezeContract

Run freezeContract to freeze contract according contract address. Parameter:

* Contract address: To deploy contract can get contract address. The prefix of Ox is not necessary.

[group:1]> freezeContract Oxcc5fc5abe347b7£81d9833£f4d84a356e34488845
{

"code": 0,

"msg":"success"

unfreezeContract

Run unfreezeContract to unfreeze contract according contract address. Parameter:

* Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

[group:1]> unfreezeContract Oxcc5fc5abe347b7£81d9833f4d84a356e34488845
{
"code": 0,

"msg":"success"

grantContractStatusManager

Run grantCNSManager to grant the account’s permission of contract status managememt. Parameter:
* Contract address: To deploy contract can get contract address. The prefix of Ox is not necessary.

¢ Account address: tx.origin. The prefix of Ox is not necessary.

[group:1]> grantContractStatusManager 0x30d2al7b6819f0d77f26dd3a9%9711ae75c291£7£1
—0x965ebffc38b309fa706b809017£360d4£f6de909%a
{

"code": 0,
"msg":"success"
}
getContractStatus

To run getContractStatus to query contract status according contract address. Parameter:

* Contract address: To deploy contract can get contract address. The prefix of Ox is not necessary.

[group:1]> getContractStatus 0Oxcc5fc5abe347b7£81d9833£4d84a356e34488845
The contract is available.

124 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

listContractStatusManager

To run listContractStatusManager to query a list of authorized accounts that can manage a specified contract.
Parameter:

* Contract address: To deploy contract can get contract address. The prefix of Ox is not necessary.

[group:1]> listContractStatusManager 0x30d2al7b6819f0d77£26dd3a9711ae75c291f7f1
[
"0x0cc9b73b960323816ac5£52806257184c08b5acO",
"0x965ebffc38b309fa706b809017£360d4£6de909%a"

grantCommitteeMember

grant account with Committee Member permission. Parameters:

e account address

[group:1]> grantCommitteeMember 0x61d88abf7ced4a7£8479cff9ccld22bef2dac9b9a
{

"code":0,

"msg" :"success"

revokeCommitteeMember

revoke account’s Committee Member permission, parameters:

e account address

[group:1]> revokeCommitteeMember 0x61d88abf7ced4a7£8479cff9cclid22bef2dac9b9a
{

"code":0,

"msg":"success"

listCommitteeMembers

[group:1]> listCommitteeMembers

B
| address | enable_num .
. |

| 0x61d88abf7ceda7f8479cff9cclid22bef2dac9b9a | 1 L
. |

| 0x85961172229%aec21694d742a5bd577bedffcfec3 | 2 .
—

updateThreshold

vote to modify the votes threshold, Parameters:

e threshold:[0,99]

5.8. Console 125

FISCO BCOS EN Documentation, Release v2.5.0

[group:1]> updateThreshold 75
{

"code":0,

"msg":"success"

queryThreshold

query votes threshold

[group:1]> queryThreshold
Effective threshold : 50%

queryCommitteeMemberWeight

[group:1]> queryCommitteeMemberWeight 0x61d88abf7ce4a7£8479cff9ccld22bef2dac9p9a
Account: 0x61d88abf7ced4a7£8479cff9ccld22bef2dac9b9a Weight: 1

updateCommitteeMemberWeight

update Committee Member’s votes. Parameters:
¢ account address

* votes

[group:1]> updateCommitteeMemberWeight 0x61d88abf7ced4a7£8479cff9ccld22bef2dac9%p9a 2
{

"code":0,
"msg":"success"
}
grantOperator

grantOperator, committee member’s permission, parameters:

e account address

[group:1]> grantOperator 0x283£f5b859e34f7£d2cf136c07579dcc72423blb2
{

"code":0,

"msg" :"success"
}
revokeOperator

revokeOperator, committee member’s permission, parameters:

e account address

[group:1]> revokeOperator 0x283f5b859e34£f7£d2cf136c07579dcc72423blb2
{

"code":0,
"msg":"success"

126 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

listOperators

list address who has operator permission o

[group:1]> listOperators

B
| address | enable_num .
o |

| 0x283f5b859e34f7fd2cf136c07579dcc72423b1b2 | 1 .
o |

B

freezeAccount

Run freezeAccount to freeze account according account address. Parameter:

e account address: tx.origin. The prefix of Ox is necessary.

[group:1]> freezeAccount 0Oxcc5fc5abe347b7£81d9833£4d84a356e34488845
{

"code":0,

"msg":"success"

unfreezeAccount

Run unfreeze Account to unfreeze account according account address. Parameter:

e account address: tx.origin. The prefix of Ox is necessary.

[group:1]> unfreezeAccount Oxcc5fcb5abe347b7£81d9833£4d84a356e34488845
{

"code":0,

"msg":"success"

getAccountStatus

Run getAccountStatus to get status of the account according account address. Parameter:

* account address: tx.origin. The prefix of Ox is necessary.

[group:1]> getAccountStatus Oxcc5fc5abe347b7£81d9833£4d84a356e34488845
The account is available.

5.8.7 Appendix: Java environment configuration

Install Java in ubuntu environment

Install the default Java version (Java 8 version or above)
sudo apt install -y default-jdk

query Java version

java -version

5.8. Console 127

FISCO BCOS EN Documentation, Release v2.5.0

Install Java in CentOS environment

Note: the OpenJDK under CentOS does not work properly and needs to be replaced with the OracleJDK.

To create new folder to install Java 8 version or above. To put the downloaded,
—jdk in the software directory

Download Java 8 version or above from Oracle official website (https://www.
—oracle.com/technetwork/java/javase/downloads/index.html). For example, to_,
—download jdk-8u20l-linux-x64.tar.gz

mkdir /software

To unzip jdk

tar —-zxvf jdk-8u20l-linux-x64.tar.gz

To configure the Java environment and edit the /etc/profile file.

vim /etc/profile

He U S U S

After opening the file, to enter the following three sentences into the file and_
—exit

export JAVA_HOME=/software/jdk-8u20l-linux-x64.tar.gz
export PATH= \ HOME/bin:$SPATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools. jar

profile takes effect

$ source /etc/profile

To inquire the Java version. If the result shows the version you just downloaded,
— the installation is successful.

java —-version

5.9 Manage blockchain accounts

FISCO BCOS uses accounts to identify each individual user. In a blockchain system each account corresponds
to a pair of public and private keys. The account named by the address string calculated by the secure one-way
algorithm such as sha256 hash, that is account address. For distinguishing from the address of smart contract,
the account address is often referred to as the external account address. The private key only known by the
user corresponds to the password in the traditional authentication model. Users need to prove that they own the
private key of the corresponding account through a secure cryptographic protocol for claiming their ownership of
the account, and performing some sensitive account operations.

Important: In the previous tutorials, for simplifying the operation, we operate with the account provided by the
tool by default. However, in actual application deployment, users need to create their own accounts and properly
save the account private key to avoid serious security problems such as account private key leakage.

In this article, we will specifically introduce the creation, storage and use of accounts. Readers are required to
have a basic knowledge of Linux.

FISCO BCOS provides the get_account script and Web3SDK to create accounts, as well as a Web3SDK and
console to store account private keys. Users can choose to store the account private key as a file in PEM or
PKCS12 format according to their needs. The PEM format uses a plaintext storage private key, and the PKCS 12
encrypts and stores the private key using a user-provided password.

5.9.1 Create your account

Use script to create account

1. get script

curl -LO https://raw.githubusercontent.com/FISCO-BCOS/console/master/tools/get_
—account.sh && chmod u+x get_account.sh && bash get_account.sh -h

128 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

Note:

* If the get_account.sh script cannot be downloaded for a long time due to network problems, try curl -LO
https://gitee.com/FISCO-BCOS/console/raw/master/tools/get_account.sh && chmod u+x get_account.sh
& & bash get_account.sh -h

* Please use curl -LO https://www.fisco.com.cn/cdn/deps/tools/tassl.tar.gz, and place in ~/.fisco/tassl

If you use guomi version fisco, please execute below command to get get_gm_account . sh

curl -LO https://raw.githubusercontent.com/FISCO-BCOS/console/master/tools/get_gm_
—account.sh && chmod u+x get_gm_account.sh && bash get_gm_account.sh -h

Note:

e If the get_gm_account.sh script cannot be downloaded for a long time due to network problems, try
curl -LO https://gitee.com/FISCO-BCOS/console/raw/master/tools/get_gm_account.sh && chmod u+x
get_gm_account.sh && bash get_gm_account.sh -h

execute the above command and if you see the following output, you are downloading the correct script, otherwise
please try again.

Usage: ./get_account.sh
default generate account and store private key in PEM format file
-p generate account and store private key in PKCS12 format file
-k [FILE] calculate the address of PEM format [FILE]
-P [FILE] calculate the address of PKCS12 format [FILE]
—-h Help

2. Generate private key in PEM format

* generate private key and address

bash get_account.sh

Execute the above command to get output similar to the following. It includes the account address and the private
key PEM file with the account address as the file name.

[INFO] Account Address : Oxeebfffba2dab55a763198e361c7dd627795906ead
[INFO] Private Key (pem) : accounts/0Oxee5fffba2da55a763198e361c7dd627795906ead.pem

* Specify the calculation account address of PEM format

’bash get_account.sh -k accounts/0Oxee5fffba2da55a763198e361c7dd627795906ead.pem

Execute the above command. The result is as follows

’[INFOJ Account Address : Oxeebfffba2da55a763198e361c7dd627795906ead

3. Use script to generate PKCS12 format private key

 generate private key and address

bash get_account.sh -p

5.9. Manage blockchain accounts 129

FISCO BCOS EN Documentation, Release v2.5.0

Execute the above command to get output similar to the following. You can follow the prompts to enter the
password and generate the corresponding p12 file.

Enter Export Password:

Verifying - Enter Export Password:

[INFO] Account Address : 0x02f1b23310ac8e28cb6084763d16b25a2cc7£5el

[INFO] Private Key (pl2) : accounts/0x02f1b23310ac8e28cb6084763d16b25a2¢cc7f5el.pl2

 Specify the calculation account address of p12 private key. Enter the p12 file password as prompted

bash get_account.sh -P accounts/0x02f1b23310ac8e28cb6084763d16b25a2¢cc7f5el.pl2

Execute the above command. The result is as follows

Enter Import Password:
MAC verified OK
[INFO] Account Address : 0x02f1b23310ac8e28cb6084763d1l6b25a2cc7£f5el

Calling Web3SDK to create an account

//create normal account

EncryptType.encryptType = 0;

//create national cryptography account, which uses for sending transaction to_
—national blockchain node

// EncryptType.encryptType = 1;

Credentials credentials = GenCredential.create();

//account address

String address = credentials.getAddress();

//account private key

String privateKey = credentials.getEcKeyPair ().getPrivateKey () .toString(1l6);

//account public key
String publicKey = credentials.getEcKeyPair ().getPublicKey () .toString(16);

For more details on the operation, to see Creating and Using a Specified External Account.

5.9.2 Store your account credential
* web3SDK supports loading via private key string or file, so the private key of the account can be stored in
the database or in a local file.
¢ Local files support two storage formats, which are PKCS12 encrypted storage and PEM plaintext storage.

* When developing a service, you can select the storage management of private key according to the actual
business scenario.

5.9.3 Load your account credential

Console loads private key file

The console provides the account generation script get_account.sh. The generated account file is in the accounts
directory, and the account file loaded by console must be placed in this directory.

The console startup methods are as follows:

./start.sh

./start.sh groupID

./start.sh groupID -pem pemName
./start.sh groupID -pl2 pl2Name

130 Chapter 5. Manual (Revision in progress)

../sdk/sdk.html#id5

FISCO BCOS EN Documentation, Release v2.5.0

Default startup

Console randomly generates an account, startup with the group number specified in console configuration file.

./start.sh

Specify group nhumber to startup

Console randomly generates an account, startup with the group number specified on the command line.

./start.sh 2

» Note: The specified group needs to configure bean in console configuration file.

Use PEM private key file to startup

» Startup with the account of the specified pem file. Enter the parameters: group number, -pem, and pem file
path

./start.sh 1 —-pem accounts/0xebb824al1122e587b17701ed2e512d8638dfb9c88.pem

Use PKCS12 private key file to startup

» Startup with the account of the specified p12 file. Enter the parameters: group number, -p12, and p12 file
path

./start.sh 1 -pl2 accounts/0x5ef4dflbl56bc9f077ee992a283c2dbb0bf045c0.pl2
Enter Export Password:

Web3SDK loads private file

If the account private key file in PEM or PKCS12 format is generated by the account generation script
get_accounts.sh, the account can be used by loading the PEM or PKCS12 account private key file. There are
two classes of private keys to be loaded: P12Manager and PEMManager. P12Manager is used to load the private
key file in PKCS12 format. PEMManager is used to load the private key file in PEM format.

* P12Manager usage example: configure the private key file path and password for the PKCS12 account in
applicationContext.xml

<bean id="pl2" class="org.fisco.bcos.channel.client.P12Manager" init-method="load"
>

<property name="password" value="123456" />

<property name="pl2File" value=
—"classpath:0x0£fc3c4bb89bd90299db4c62be0174c4966286c00.pl2" />
</bean>

develop code

//load Bean

ApplicationContext context = new ClassPathXmlApplicationContext (
—"classpath:applicationContext.xml") ;

Pl12Manager pl2 = context.getBean (Pl2Manager.class);

//provide password to get ECKeyPair. The password is specified when producing pl2_,
—account file

(continues on next page)

5.9. Manage blockchain accounts 131

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

ECKeyPair pl2KeyPair = pl2.getECKeyPair (pl2.getPassword());

//output the private key and public key in hex string
System.out.println ("pl2 privateKey: " + pl2KeyPair.getPrivateKey().toString(l6));
System.out.println ("pl2 publicKey: " + pl2KeyPair.getPublicKey () .toString(16));

//generate Credentials for web3sdk using
Credentials credentials = Credentials.create (pl2KeyPair);
System.out.println ("pl2 Address: " + credentials.getAddress());

* PEMManager usage example:

configure the private key file path and password for the PEM account in applicationContext.xml

<bean id="pem" class="org.fisco.bcos.channel.client.PEMManager" init-method="load"
>

<property name="pemFile" value=
—"classpath:0x0fc3c4bb89bd90299db4c62be0174c4966286c00.pem™ />
</bean>

load with code

//load Bean

ApplicationContext context = new ClassPathXmlApplicationContext (
—"classpath:applicationContext-keystore-sample.xml") ;
PEMManager pem = context.getBean (PEMManager.class);

ECKeyPair pemKeyPair = pem.getECKeyPair();

//output the private key and public key in hex string
System.out.println ("PEM privateKey: " + pemKeyPair.getPrivateKey ().toString(l6));
System.out.println ("PEM publicKey: " + pemKeyPair.getPublicKey () .toString(16));

//generate Credentials for web3sdk using
Credentials credentialsPEM = Credentials.create (pemKeyPair);
System.out.println ("PEM Address: " + credentialsPEM.getAddress());

5.9.4 Account address calculation

The account address of FISCO BCOS is calculated by the ECDSA public key. The hexadecimal of ECDSA public
key represents the calculation of keccak-256sum hash, and the hexadecimal of the last 20 bytes of the calculation
result is taken as the account address. Each byte requires two hexadecimal to represent, so the length of account
address is 40. FISCO BCOS’s account address is compatible with Ethereum.

Note: keccak-256sum is different from SHA3. For details to refer to here.

Ethernet Address Generation

1. generate ECDSA private key

First, we use OpenSSL to generate an elliptic curve private key. The parameters of the elliptic curve are secp256k1.
To run the following command to generate a private key in PEM format and save it in the ecprivkey.pem file.

’openssl ecparam —-name secp256kl —-genkey -noout -out ecprivkey.pem

Execute the following instructions to view the contents of the file.

’cat ecprivkey.pem

You can see output similar to the following

132 Chapter 5. Manual (Revision in progress)

https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use
https://kobl.one/blog/create-full-ethereum-keypair-and-address/

FISCO BCOS EN Documentation, Release v2.5.0

MHQCAQEEINHaCmLhw9S9+vD0IOSUd9TIhHO9DbBVIXTbbBeTyFNvesoAcGBSuUBBAAK
oUQDQgAE jSUbQAZn4tzHnsbeahQ2J0AeMuliNOxpdpyPo3j9Dig3qdl jrv07wvix
z0zLpUNRcJCC5hnUS00MD+4+Zxc8zQ==

Next, to calculate the public key based on the private key. To execute the following command.

openssl ec —-in ecprivkey.pem -text —-noout 2>/dev/null| sed -n '7,11p' | tr -d ": \n
" | awk '{print substr($0,3);}"'

You can get output similar to the following

8d251b400667e2dcc79ec6de6a14362740le32ed2234ec69769c8fa378dee2ab7a9d963aefd3bc2f8f1+ceccba543517

2. Calculate the address based on the public key

In this section, we calculate the corresponding account address based on the public key. The keccak-256sum tool
we need to get is available for download from here.

openssl ec —-in ecprivkey.pem -text —-noout 2>/dev/null| sed -n '7,11p' | tr -d ": \n
" | awk "{print substr($0,3);}" | ./keccak-256sum -x -1 | tr -d ' -' | tail -c 41

Get the output similar to the following, which is the calculated account address.

’dcc703COeSOOb653ca82273b7bfad8045d85a470

5.10 Smart contract development

FISCO BCOS platform currently supports two smart contract forms which are Solidity and pre-compiled.
» The Solidity contract is the same as Ethereum on supporting the latest 0.5.2 version.

* The KVTable contract get/set interfacr and Table contract CRUD interface supporting the distributed storage
pre-compilation contract in the Solidity contract, which can store the data of Solidtiy contract in the AMDB
table structure, realizes the separation of contract logic and data.

* The precompiled (precompiled) contract is developed in C++ and built into the FISCO BCOS platform.
It has better performance than the Solidity contract. Its contract interface that needs to be pre-determined
when compiling, is suitable for the scenarios with fixed logic but consensus, such as group configuration.
The development of precompiled contracts will be introduced in the next section.

5.10.1 Solidity contract development

* Solidity official file

¢ Remix online IDE

5.10.2 Use KVTable contract get/set interface

Note: To make the table created by AMDB accessible to multiple contracts, it should have a unique name that
acknowledged globally. So it is unable to create tables with same name within one group on the same chain
KVTable added in v2.3.0, the version of chain >= v2.3.0 can use this function.

KVTable contract use key/value type to get/set data of table, code is as follows:

5.10. Smart contract development 133

https://github.com/vkobel/ethereum-generate-wallet/tree/master/lib
https://solidity.readthedocs.io/en/latest/
https://remix.ethereum.org/

FISCO BCOS EN Documentation, Release v2.5.0

pragma solidity 70.4.24;

contract KVTableFactory ({
function openTable (string) public view returns (KVTable);
function createTable(string, string, string) public returns (int256);

//one record

contract Entry {
function getlInt (string) public constant returns (int256);
function getUInt (string) public constant returns (int256);
function getAddress(string) public constant returns (address);
function getBytes64 (string) public constant returns (bytesl[64]);
function getBytes32(string) public constant returns (bytes32);
function getString(string) public constant returns (string);

function set (string, int256) public;
function set (string, uint256) public;
function set (string, string) public;
function set (string, address) public;

//KVTable per permiary key has only one Entry

contract KVTable {
function get (string) public view returns (bool, Entry);
function set (string, Entry) public returns (int256);
function newEntry () public view returns (Entry);

Offer a use case of KVTableTest.sol, code is as follows:

pragma solidity 70.4.24;
import "./Table.sol";

contract KVTableTest {
event SetResult (int256 count);

KVTableFactory tableFactory;
string constant TABLE_NAME = "t_kvtest";

constructor () public {
//The fixed address is 0x1010 for KVTableFactory
tableFactory = KVTableFactory (0x1010);
// the parameters of createTable are tableName, keyField, "vlaueFiledl,
—vlaueFiled2,vlaueFiled3,..."
tableFactory.createTable (TABLE_NAME, "id", "item_price,item_name");

//get record
function get (string id) public view returns (bool, int256, string) {
KVTable table = tableFactory.openTable (TABLE_NAME) ;
bool ok = false;
Entry entry;
(ok, entry) = table.get (id);
int256 item_price;
string memory item_name;

if (ok) {
item_price = entry.getInt ("item price");
item_name = entry.getString("item_name");

}

return (ok, item_price, item_name);

(continues on next page)

134 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

//set record

function set (string id, int256 item_price, string item_name)
public
returns (int256)

KVTable table = tableFactory.openTable (TABLE_NAME) ;
Entry entry = table.newEntry();

// the length of entry's field value should < 16MB
entry.set ("id", id);

entry.set ("item_price", item_price);

entry.set ("item_name", item_name);

// the first parameter length of set should <= 255B
int256 count = table.set (id, entry);

emit SetResult (count);

return count;

KVTableTest.sol calls KVTable contract to create a user table t_kvtest. The table structure of
t_kvtestis as follows. This table records the materials in a company’s warehouse, takes the unique material id
as the key, and saves the name and price of the materials.

5.10.3 To use Table contract CRUD interface

Accessing AMDB requires using the AMDB-specific smart contract interface Table. sol which is a database
contract that can create tables and add, delete, and modify the tables.

Note: To make the table created by AMDB accessible to multiple contracts, it should have a unique name that
acknowledged globally. So it is unable to create tables with same name within one group on the same chain. The
CRUD interface of Table contract can have multiple records under a key. When it is used, it will perform batch
data operations, including batch writing and range query. For this feature, it is recommended to use MySQL as
the back-end database. When using the get/set interface of KVTable, it is recommended to use rocksdb as the
back-end database. Because rocksdb is a non relational database stored in key value, the single key operation
efficiency is higher when using KVTable interface.

Table.sol file code is as follows:

pragma solidity 70.4.24;

contract TableFactory {
function openTable(string) public constant returns (Table); // open table
function createTable (string, string, string) public returns(int); // create
—~table
}

// inquiry conditions

contract Condition {
//equal to
function EQ(string, int) public;
function EQ(string, string) public;

//unequal to
function NE (string, int) public;

function NE (string, string) public;

//greater than

(continues on next page)

5.10. Smart contract development 135

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

function GT (string,

int)

public;

//greater than or equal to

function GE (string, int)
//smaller than
function LT (string, int)

public;

public;

//smaller than or equal to

function LE (string,

int)

public;

//1imit the number of return record

function limit (int)
function limit (int,

// single entry data record

contract Entry {
function

public;
int)

public;

getInt (string) public constant returns(int);

function getAddress (string) public constant returns (address);
function getBytes64 (string) public constant returns (byte[64]);
function getBytes32(string) public constant returns (bytes32);
function getString(string) public constant returns(string);
function set (string, int) public;

function set (string, string) public;

function set (string, address) public;

// data record set
contract Entries {
function get (int)
function size ()

// Table main type

contract Table {
// select interface
function select (string,
// insert interface
function insert (string,
// update interface
function update(string,
// remove Iinterface
function remove (string,

function newEntry ()
function newCondition ()

public constant returns (Entry);
public constant returns (int);

Condition) public constant returns (Entries);

Entry) public returns (int);

Entry, Condition) public returns(int);

Condition) public returns (int);

public constant returns (Entry);
public constant returns (Condition);

Note:

* The type of key in insert, remove, update and select functions of Table contract is string, and the maximum

length is 255 characters

* The key type of the get/set interface of the Entry is string, with the maximum length of 255 characters. The
types supported by value are int256 (int), address and string, of which string cannot exceed 16MB.

To provide a contract case TableTest .sol. The code is as follows:

pragma solidity 70.4.24;

(continues on next page)

136

Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

import "./Table.sol";

contract TableTest {
event CreateResult
event InsertResult
event UpdateResult
event RemoveResult

int count);
int count);
) .
)

int count
int count

(
(
(
(.

’

// create table
function create () public returns (int) {
TableFactory tf = TableFactory (0x1001); // TableFactory's address 1is_,
—~fixed at 0x1001
// To create a table t_test. Table's key field as name. Table's value_
—~field as item id and item name.
// key_field indicates the row that AMDB's primary key value_field
—represents in the table. The row can be multiple and spearated by commas.
int count = tf.createTable("t_test", "name", "item_id,item_name");
emit CreateResult (count);

return count;

// inquiry data
function select (string name) public constant returns(bytes32[], int[],
—bytes32[]) {
TableFactory tf = TableFactory (0x1001);
Table table = tf.openTable("t_test");

[

// If the condition is empty, it means no filtering. You can use,
—conditional filtering as needed.
Condition condition = table.newCondition();

Entries entries = table.select (name, condition);

bytes32[] memory user_name_pytes_list = new bytes32[] (uint256 (entries.
—size()));

int[] memory item_id_list = new int|[] (uint256 (entries.size()));

bytes32[] memory item_name_pytes_list = new bytes32[] (uint256 (entries.
—size()));

for (int i=0; i<entries.size(); ++i) |
Entry entry = entries.get (i);

user_name_bytes_list[uint256(i)] = entry.getBytes32 ("name");
item_id_list[uint256(i)] = entry.getInt("item_ id");
item_name_bytes_list[uint256(i)] = entry.getBytes32 ("item name");

return (user_name_bytes_list, item_id_list, item_name_bytes_list);
}
// insert data
function insert (string name, int item_id, string item name) public
—returns (int) {
TableFactory tf = TableFactory (0x1001);
Table table = tf.openTable("t_test");

Entry entry = table.newEntry();
entry.set ("name", name);

entry.set ("item_id", item_id);
entry.set ("item_name", item_name);

int count = table.insert (name, entry);

(continues on next page)

5.10. Smart contract development 137

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

emit InsertResult (count);

return count;
}
// update data
function update (string name, int item_id, string item_name) public
—returns (int) {
TableFactory tf = TableFactory (0x1001);
Table table = tf.openTable("t_test");

Entry entry = table.newEntry();
entry.set ("item_name", item_name);

Condition condition = table.newCondition();
condition.EQ ("name", name) ;
condition.EQ("item_id", item_id);

int count = table.update (name, entry, condition);
emit UpdateResult (count);

return count;

}

// remove data

function remove (string name, int item_id) public returns (int) {
TableFactory tf = TableFactory (0x1001);
Table table = tf.openTable("t_test");

Condition condition = table.newCondition();
condition.EQ ("name", name);

condition.EQ("item_id", item_id);

int count = table.remove (name, condition);
emit RemoveResult (count);

return count;

TableTest.sol has called the intelligent contract Table.sol of AMDB, which implements creating the
user table t_test and the functions of adding, deleting and changing t _test. The t_test table is structured
as follows. This table records the item and item’s numbers used by a employees.

The client requiring to call the contract code which is converted to Java file, needs to put TableTest.sol and
Table.sol into the directory contracts/solidity, and TableTest.java is generated by the compile script of sol2java.sh.

5.10.4 Precompiled contract development

1. Introduction

Precompiled contract is a natively supported feature of Ethereum: a contract that uses C++ code to implement spe-
cific functions at the underlying platform for EVM module calling. FISCO BCOS inherits and extends this feature,
and has developed a powerful and easy-to-expand framework on this basis of it.precompiled design principle.

This article is an introductory to guide users on how to implement their own precompiled contracts and how to
call them.

2. Implement precompiled contracts

138 Chapter 5. Manual (Revision in progress)

FISCO BCOS EN Documentation, Release v2.5.0

2.1 Process

The process of implementing a pre-compiled contract:
* assign contract address

For calling a solid contract or pre-compiled contract, you need to distinguish it by the contract address and address
space.

The address range of user assigned interval is 0x5001-0xf£££f. Users needs to assign an unused address to the
new precompiled contract. The precompiled contract addresses must be unique and not conflicting.

List of precompiled contracts and address assignments implemented in FISCO BCOS:
* define contract interface

It is similar to solidity contract. When designing a contract, you need to determine the ABI interface of the contract
first. The ABI interface rules of the precompiled contract are exactly the same as the solidity. solidity ABI link.

When defining a precompiled contract interface, you usually need to define a solidity contract with
the same interface, and empty the function body of all interfaces. This contract is called interface
contract of the precompiled contract. The interface contract need to be used when calling the pre-
compiled contract.

pragma solidity 70.4.24;
contract Contract_Name {
function interfaceO (parameters ...) {}

function interfaceN (parameters ...) {}

* design storage structure

When a precompiled contract involves a storage operation, it needs to determine the stored table information
(table name and table structure. The stored data will be uniformly abstracted into a table structure in FISCO
BCOS)storage structure.

Note: This process can be omitted without involving a storage operation.

* implement contract logic

For implementing the calling logic of the new contract, you need to implement a new C++ class that needs to inherit
[precompiled] (https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libprecompiled/Precompiled.h)
#L.37) to overload the call function for achieving the calling behaviour of each interface.

// libprecompiled/Precompiled.h
class Precompiled
{
virtual bytes call(std::shared_ptr<ExecutiveContext> _context,
—bytesConstRef _param,
Address const& _origin = Address()) = 0;
}i

The call function has three parameters:
std: :shared_ptr<ExecutiveContext> _context : the context for the transaction execution saving

bytesConstRef _param : calling the parameter information of the contract. The calling corresponding
contract interface and the parameters of interface can be obtained from _param parsing.

Address const& _origin : transaction sender for permission control
How to implement a Precompiled class will be detailed in the sample below.

* register contract

5.10. Smart contract development 139

https://solidity.readthedocs.io/en/latest/abi-spec.html

FISCO BCOS EN Documentation, Release v2.5.0

Finally, the contract address and the corresponding class need to be registered to the execution context of the
contract, so that the execution logic of the contract can be correctly recognized when the precompiled contract is
called by the address. To view the registered pre-compiled contract list.

Registration path:
file libblockverifier/ExecutiveContextFactory.cpp
function initExecutiveContext

2.2 sample contract development

// HelloWorld.sol
pragma solidity 70.4.24;

contract HelloWorldf{
string name;

function HelloWorld () {

name = "Hello, World!";

function get () constant returns(string) {
return name;

function set (string n) {
name = n;

The above source code is the HelloWorld contract written by solidity. This chapter will implement a precompiled
contract with the same function to enable user step by step to have an visual understanding to the precompiled
contract. sample c++source code path:

libprecompiled/extension/HelloWorldPrecompiled.h
libprecompiled/extension/HelloWorldPrecompiled. cpp

2.2.1 assign contract address

Referring to the address range, the address of the HelloWorld precompiled contract is assigned as:

0x5001

2.2.2 define contract interface

We need to implement the HelloWorld contract function. The interface is the same as the HelloWorld interface.
HelloWorldPrecompiled interface contract:

pragma solidity 70.4.24;

contract HelloWorldPrecompiled {
function get () public constant returns(string) {}
function set (string _m) {}

140 Chapter 5. Manual (Revision in progress)

https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libblockverifier/ExecutiveContextFactory.cpp#L36
https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libprecompiled/extension/HelloWorldPrecompiled.cpp

FISCO BCOS EN Documentation, Release v2.5.0

2.2.3 design storage structure

HelloWorldPrecompiled needs to store the string value of the set, so when it comes to storage operations, you
need to design the stored table structure.

table name: _ext_hello_world_
table structure:

The table stores only a pair of key-value pairs. The key field is hello_key and the value field is hello_value. For
storing the corresponding string value, it can be modified by the set(string) interface and obtained by the get()
interface.

2.2.4 implement call logic

To add the HelloWorldPrecompiled class, overload the call function, and implement the calling behavior of all
interfaces.call function source code.

The user-defined Precompiled contract needs to add a new class for defining the calling behaviour of the contract
in the class. In the example, for adding the HelloWorldPrecompiled class, the following work must complete:

* interface registration

// define all interfaces in the class
const charx const HELLO_WORLD_METHOD_GET = "get ()";
const charx const HELLO_WORLD_METHOD_SET = "set (string)";

// register interface in the constructor
HelloWorldPrecompiled: :HelloWorldPrecompiled()
{
// name2Selector is a member of the Base class Precompiled, which saves the_
—mapping relationship of the interface call.

name2Selector [HELLO_WORLD_METHOD_GET] = getFuncSelector (HELLO_WORLD_METHOD_
—GET) ;

name2Selector [HELLO_WORLD_METHOD_SET] = getFuncSelector (HELLO_WORLD_METHOD_
<—>SET) ;

}

¢ table creation

define the table’s name and field structure

// define the name

const std::string HELLO_WORLD_TABLE_NAME = "_ext_hello_world ";
// define the key field
const std::string HELLOWORLD_KEY_FIELD = "key";

// "field0O, fieldl, field2" define other fields, multiple fields separated by commas,
— such as "field0, fieldl,field2"
const std::string HELLOWORLD_VALUE_FIELD = "value";

// In the call function, the table is opened when it exists, otherwise the table_
—1s created first.
Table::Ptr table = openTable (_context, HELLO_WORLD_TABLE_NAME) ;
if (!'table)
{
// table is created while it does not exist
table = createTable(_context, HELLO_WORLD_TABLE_NAME, HELLOWORLD_KEY_FIELD,
HELLOWORLD_VALUE_FIELD, _origin);
if ('table)
{

// fail to create and return false

(continues on next page)

5.10. Smart contract development 141

https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master/libprecompiled/extension/HelloWorldPrecompiled.cpp#L66

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

After getting the operation handle of the table, user can implement the specific logic of the table operation.
* call interface distinguishing
Parsing _param with getParamFunc can distinguish the call interface.

Note: the contract interface must be registered in the constructor

uint32_t func = getParamFunc (_param);
if (func == name2Selector [HELLO_WORLD_METHOD_GET])
{
// get () call interface logic
}
else if (func == name2Selector [HELLO_WORLD METHOD_SET])
{
// set (string) call interface logic
}
else

{

// unknown interface, call error, return error

e Parameter parsing and result return

The parameters during calling the contract are included in the _param parameter of the call function. They are
encoded according to the Solidity ABI format. The dev: :eth: :ContractABI utility class can be used to
parse the parameters. Similarly, when the interface returns, the return value also needs to be encoded according to
the format. Solidity ABIo-

In dev::eth::ContractABI class, we need to use two interfaces abiIn abiOut. The former serializes
the former user parameter and the latter can parse the parameter from the serialized data.

// to serialize ABI data. c++ type data serialized to the format used by evm
// _id: The corresponding string of the function interface declaration, which_,
—generally default to ""

template <class... T> bytes abilIn(std::string _id, T consté&... _t)
// to parse serialized data into c++ type data
template <class... T> void abiOut (bytesConstRef _data, T&... _t)

The sample code below shows how the interface works:

// for transfer interface: transfer (string,string,uint256)

// Parameterl

std::string strl = "fromAccount";
// Parameterl2
std::string str2 = "toAccount";

// Parameterl3
uint256 transferAmoumt = 11111;

dev::eth::ContractABI abi;
// serialization, abiIn first string parameter default to ""
bytes out = abi.abiIn("", strl, str2, transferAmoumt) ;

std::string strOutl;
std::string strOut2;

uint256 amoumt;

// parse parameter

(continues on next page)

142 Chapter 5. Manual (Revision in progress)

https://solidity.readthedocs.io/en/latest/abi-spec.html

FISCO BCOS EN Documentation, Release v2.5.0

(continued from previous page)

abi.abilOut (out, strOutl, strOut2, amount);
// parse after

// stroutl = "fromAccount";

// strout2 = "toAccount"

// amoumt = 11111

Finally, the HelloWorldPrecompiled call function is implemented completely.source code link.

bytes HelloWorldPrecompiled::call (dev::blockverifier::ExecutiveContext: :Ptr _
—context,
bytesConstRef _param, Address const& _origin)

// parse function interface

uint32_t func = getParamFunc (_param);

/7

bytesConstRef data = getParamData (_param);
bytes out;

dev::eth::ContractABI abi;

// open table
Table::Ptr table = openTable (_context, HELLO_WORLD_TABLE_NAME) ;
if (!'table)
{
// table is created while it does not exist
table = createTable (_context, HELLO_WORLD_TABLE_NAME, HELLOWORLD_KEY_ FIELD,
HELLOWORLD_VALUE_FIELD, _origin);
if (!'table)
{
// fail to create table. no authority?
out = abi.abiIn("", CODE_NO_AUTHORIZED) ;
return out;

// to distinguish the calling interface and specify the calling logic of each,,
—interface
if (func == name2Selector [HEL