

FISCO BCOS Documentation

[image: _static/images/FISCO_BCOS_Logo.svg]FISCO BCOS is a reliable, secure, efficient and portable blockchain platform with proven success from many partners and successful financial-grade applications.

	Github homepage [https://github.com/FISCO-BCOS/FISCO-BCOS/tree/master-2.0]

	Insightful articles [http://mp.weixin.qq.com/mp/homepage?__biz=MzA3MTI5Njg4Mw==&hid=2&sn=4f6d7251fbc4a73ed600e1d6fd61efc1&scene=18#wechat_redirect]

	Code contribution [https://mp.weixin.qq.com/s/_w_auH8X4SQQWO3lhfNrbQ]

	Feedback [https://github.com/FISCO-BCOS/FISCO-BCOS/issues]

	Application cases [https://mp.weixin.qq.com/s/cUjuWf1eGMbG3AFq60CBUA]

	WeChat group [https://github.com/FISCO-BCOS/FISCO-BCOS-DOC/blob/release-2/images/community/WeChatQR%2Ejpg]

	WeChat official account [https://github.com/FISCO-BCOS/FISCO-BCOS-DOC/blob/release-2/images/community/OfficialAccountsQR%2Ejpg]

Overview

	To fast build a blockchain system based on FISCO BCOS 2.0+, please read Installation

	To deploy multi-group blockchain and the first blockchain application based on FISCO BCOS 2.0+, please read Quick Guide

	To know more about functions of FISCO BCOS 2.0+, please read Config files and items, Node access, Parallel transactions, Distributed storage, OSCCA computing in Operation Tutorial

	Console：Interactive command tool to visit blockchain nodes and check status, deploy or call contract, etc.

	Deployment tool(Generator)：to support operations like building blockchain, expansion, etc., recommended for business level applications. You can learn the operation methods in Quick Guide

	SDK：offer APIs for node status, blockchain system configuration modification and nodes to send transactions.

	The detailed introduction of browser is in Browser

	JSON-RPC interface is introduced in JSON-RPC API

	System design documentation: System design

Key features

	Multi-group: Quick Guide Operation Tutorial Design Documentation

	Parallel computing: Operation Tutorial Design documentation

	Distributed storage: Operation Tutorial Design documentation

Important

	This technical documentation is only adaptable for FISCO BCOS 2.0+. For FISCO BCOS 1.3.x users, please check Ver.1.3 Documentation [http://fisco-bcos-documentation.readthedocs.io/zh_CN/release-1.3/]

	FISCO BCOS 2.0+ and its adaptability are illustrated here

Introduction

	Introduction

	Compatibility

Tutorials

	Installation

	Build the first blockchain application

	More Tutorials

Development

	Build Blockchain Network

	Application Development

	FAQ (Revision in progress)

Tools

	Chain building script

	Console

	Blockchain browser

	Enterprise deployment tool

Reference

	JSON-RPC API

	Java SDK JavaDoc [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/javadoc/index.html]

	《深入浅出FISCO BCOS》

	Community

Introduction

FISCO BCOS is the first safe and controllable enterprise-level financial consortium blockchain platform open source by domestic enterprises. It is jointly created by the FISCO open source working group and officially launched in December 2017.

The community links multiple parties with open source. As of May 2020, more than 1000 enterprises and institutions and more than 10,000 community members have joined to build and co-governance, and developed into the largest and most active domestic consortium blockchain platform ecosystem. The underlying platform is highly available and easy to use after extensive application and practice. Hundreds of application projects are developed based on the FISCO BCOS underlying platform, and over 80 have been steadily operating in the production environment, covering cultural copyright, judicial services, government services, Internet of Things, finance, smart communities and other fields.

Note

FISCO BCOS takes the actual needs of the consortium blockchain as a starting point, taking into account performance, security, maintainability, ease of use, and scalability, and supports multiple SDK, and provides visual middleware tools, greatly reducing the time to build chains, develop and deploy applications. In addition, FISCO BCOS passed the two evaluations of the Trusted Blockchain evaluation function and performance of the Information Communication Institute, and the single-chain TPS can reach 20,000.

Key Features

	

 Compatibility

Compatibility

FISCO BCOS 2.7.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.7.0]

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.7.0

FISCO BCOS 2.6.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.6.0]

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.6.0

FISCO BCOS 2.5.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.5.0]

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.5.0

FISCO BCOS 2.4.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.4.0]

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.4.0

FISCO BCOS 2.3.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.3.0]

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.3.0

FISCO BCOS 2.2.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.2.0]

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.2.0

FISCO BCOS 2.1.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.1.0]

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.1.0

FISCO BCOS 2.0.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0]

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.0.0

FISCO BCOS 2.0.0-rc3 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc3]

	New features
	
	Distributed storage (Operation Manual)

	`CRUD SDK interface<../sdk/sdk.html#crudservice>`_ (Operation Manual)

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.0.0-rc3

FISCO BCOS 2.0.0-rc2 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc2]

	New features
	
	Parallel computing model (Operation Manual) (Operation Tutorial)

	Distributed storage (Operation Manual)

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.0.0-rc2

FISCO BCOS 2.0.0-rc1 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc1]

	New features
	
	Group architecture (Operation Tutorial) (Design Document)

	Console (Installation) (Operation Manual)

	Virtual machine

	Compile contract (Operation Manual)

	CRUD interface contract (Operation Tutorial)

	Key management service (Operation Manual)

	Admission control (Operation Manual)

	Change description, compatibility and upgrade instructions
	
	FISCO BCOS v2.0.0-rc1

FISCO BCOS 1.x Releases

	FISCO BCOS 1.3 version:
	
	FISCO BCOS 1.3.8 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.8]

	FISCO BCOS 1.3.7 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.7]

	FISCO BCOS 1.3.6 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.6]

	FISCO BCOS 1.3.5 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.5]

	FISCO BCOS 1.3.4 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.4]

	FISCO BCOS 1.3.3 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.3]

	FISCO BCOS 1.3.2 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.2]

	FISCO BCOS 1.3.1 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.1]

	FISCO BCOS 1.3.0 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.3.0]

	FISCO BCOS 1.2 version:
	
	FISCO BCOS 1.2.0 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.2.0]

	FISCO BCOS 1.1 version:
	
	FISCO BCOS 1.1.0 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.1.0]

	FISCO BCOS 1.0 version:
	
	FISCO BCOS 1.0.0 Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.0.0]

	FISCO BCOS preview version：
	
	FISCO BCOS 1.5.0 pre-release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v1.5.0-pre-release]

View node and data versions

	View node binary version:./fisco-bcos --version

	Data format and version of communication protocol: to get it via ‘supported_version’ configuration item in the configuration file config.ini

 Installation

Installation

This chapter will introduce the required installations and configurations of FISCO BCOS. For better understanding, we will illustrate an example of deploying a 4-node consortium chain in a local machine using FISCO BCOS. Please use the supported hardware and platform operations according to here.

To build a single-group consortium chain

This section takes the construction of single group FISCO BCOS chain as an example to operate. We use the build_chain.sh script to build a 4-node FISCO BCOS chain locally in Ubuntu 16.04 64bit system.

Note

	To update an existing chain, please refer to compatibility chapter.

	To build OSCCA chain, please refer to ` <../manual/guomi_crypto.html>`_ 。

	It is similar to build a multi-group chain, interested can be referred to here .

	This section uses pre-compiled static fisco-bcos binaries which tested on CentOS 7 and Ubuntu 16.04 64bit.

	build_chain use docker

Prepare environment

	Install dependence

build_chain.sh script depends on openssl, curl and is installed by using the following instructions. For CentOS system, to replaces apt with yum in the following command. For macOS system, execute brew install openssl curl.

ubuntu
sudo apt install -y openssl curl

centos
sudo yum install -y openssl openssl-devel

	Create operation directory

cd ~ && mkdir -p fisco && cd fisco

	Download build_chain.sh script

curl -#LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.7.2/build_chain.sh && chmod u+x build_chain.sh

Note

	If the build_chain.sh script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/blob/master-2.0/manual/build_chain.sh && chmod u+x build_chain.sh

Build a single-group 4-node consortium chain

Execute the following command in the fisco directory to generate a single group 4-node FISCO chain. It is necessary to ensure that the 30300~30303, 20200~20203, 8545~8548 ports of the machine are not occupied.

bash build_chain.sh -l 127.0.0.1:4 -p 30300,20200,8545

Note

	The -p option specifies the starting port, which are p2p_port, channel_port, and jsonrpc_port.

	For security and ease of use consideration, the latest configuration of v2.3.0 version splits listen_ip into jsonrpc_listen_ip and channel_listen_ip, but still retains the parsing function of listen_ip. For details, please refer to here

	In order to facilitate development and experience, the reference configuration of channel_listen_ip is 0.0.0.0. For security reasons, please modify it to a safe listening address according to the actual business network situation, such as: intranet IP or specific external IP

If the command is executed successfully, All completed will be output. If the execution fails, please check the error message in the nodes/build.log file.

Checking fisco-bcos binary...
Binary check passed.
==
Generating CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
[INFO] Execute the download_console.sh script in directory named by IP to get FISCO-BCOS console.
e.g. bash /home/ubuntu/fisco/nodes/127.0.0.1/download_console.sh
==
[INFO] FISCO-BCOS Path : bin/fisco-bcos
[INFO] Start Port : 30300 20200 8545
[INFO] Server IP : 127.0.0.1:4
[INFO] State Type : storage
[INFO] RPC listen IP : 127.0.0.1
[INFO] Output Dir : /home/ubuntu/fisco/nodes
[INFO] CA Key Path : /home/ubuntu/fisco/nodes/cert/ca.key
==
[INFO] All completed. Files in /home/ubuntu/fisco/nodes

Start FISCO BCOS chain

	Execute the following command to start all nodes

bash nodes/127.0.0.1/start_all.sh

Success will output a response similar to the following, otherwise, please use netstat -an | grep tcp to check whether the machine’s 30300~30303, 20200~20203, 8545~8548 ports are occupied.

try to start node0
try to start node1
try to start node2
try to start node3
 node1 start successfully
 node2 start successfully
 node0 start successfully
 node3 start successfully

Check process

	Execute the following command to check whether the process is started

ps -ef | grep -v grep | grep fisco-bcos

In normal situation, the output will be similar to the following. If the number of processes is not 4, then the reason why the process does not start is that the port is occupied.

fisco 5453 1 1 17:11 pts/0 00:00:02 /home/ubuntu/fisco/nodes/127.0.0.1/node0/../fisco-bcos -c config.ini
fisco 5459 1 1 17:11 pts/0 00:00:02 /home/ubuntu/fisco/nodes/127.0.0.1/node1/../fisco-bcos -c config.ini
fisco 5464 1 1 17:11 pts/0 00:00:02 /home/ubuntu/fisco/nodes/127.0.0.1/node2/../fisco-bcos -c config.ini
fisco 5476 1 1 17:11 pts/0 00:00:02 /home/ubuntu/fisco/nodes/127.0.0.1/node3/../fisco-bcos -c config.ini

Check log output

	Execute the following command to view the number of nodes that node0 links to

tail -f nodes/127.0.0.1/node0/log/log* | grep connected

In normal situation, the connecting messages will be output continuously. From the output messages, we can see that node0 has links with the other three nodes.

info|2019-01-21 17:30:58.316769| [P2P][Service] heartBeat,connected count=3
info|2019-01-21 17:31:08.316922| [P2P][Service] heartBeat,connected count=3
info|2019-01-21 17:31:18.317105| [P2P][Service] heartBeat,connected count=3

	Execute the following command to check whether it is in consensus

tail -f nodes/127.0.0.1/node0/log/log* | grep +++

In normal situation, the message will be output ++++Generating seal continuously to indicate that the consensus is normal.

info|2019-01-21 17:23:32.576197| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++Generating seal on,blkNum=1,tx=0,myIdx=2,hash=13dcd2da...
info|2019-01-21 17:23:36.592280| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++Generating seal on,blkNum=1,tx=0,myIdx=2,hash=31d21ab7...
info|2019-01-21 17:23:40.612241| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++Generating seal on,blkNum=1,tx=0,myIdx=2,hash=49d0e830...

Using console

Important

	console 1.x series is based on Web3SDK implementation, Console 2.6 after is based on `Java SDK <../sdk/java_sdk/index.html >`_ implementation, the latest version of the console is based on the Java SDK implementation

	For 2.6 and above version console documentation please refer to here

	For 1.x version console documentation, please refer to here

	You can view the current console version through the command ./start.sh --version

Console links nodes of FISCO BCOS so as to realize functions like blockchain status query, call and deploy contracts. 2.0 version console command detailed introduction refer here, 1.x version console command detailed introduction refer here.

Prepare environment

	Install Java

In macOS, execute brew cask install java to install java

ubuntu
sudo apt install -y default-jdk

centos
sudo yum install -y java java-devel

	Get console

cd ~/fisco && curl -#LO https://github.com/FISCO-BCOS/console/releases/download/v2.9.2/download_console.sh && bash download_console.sh

Note

	If the download_console.sh script cannot be downloaded for a long time due to network problems, try cd ~/fisco && curl -#LO https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/download_console.sh, and modify encryptType to 1 in applicationContext.xml.

	Copy the console configuration file. If the node does not use the default port, please replace 20200 in the file with another port.

The latest version of the console uses the following command to copy the configuration file
cp -n console/conf/config-example.toml console/conf/config.toml

	Configure the console certificate

cp nodes/127.0.0.1/sdk/* console/conf/

Start console

	Start console

cd ~/fisco/console && bash start.sh

If it outputs following information, then the console has been started successfully, otherwise please check if the node ports in conf/config.toml are configured correctly.

===
Welcome to FISCO BCOS console(2.6.0)！
Type 'help' or 'h' for help. Type 'quit' or 'q' to quit console.
 ________ ______ ______ ______ ______ _______ ______ ______ ______
| \| \ / \ / \ / \ | \ / \ / \ / \
| $$$$$$$$ \$$$$$$| $$$$$$\| $$$$$$\| $$$$$$\ | $$$$$$$\| $$$$$$\| $$$$$$\| $$$$$$\
| $$__ | $$ | $$___\$$| $$ \$$| $$ | $$ | $$__/ $$| $$ \$$| $$ | $$| $$___\$$
| $$ \ | $$ \$$ \ | $$ | $$ | $$ | $$ $$| $$ | $$ | $$ \$$ \
| $$$$$ | $$ _\$$$$$$\| $$ __ | $$ | $$ | $$$$$$$\| $$ __ | $$ | $$ _\$$$$$$\
| $$ _| $$_ | __| $$| $$__/ \| $$__/ $$ | $$__/ $$| $$__/ \| $$__/ $$| __| $$
| $$ | $$ \ \$$ $$ \$$ $$ \$$ $$ | $$ $$ \$$ $$ \$$ $$ \$$ $$
 \$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$

===

Query blockchain status

acquire client ends version information
[group:1]> getNodeVersion
ClientVersion{
 "Build Time":"20200619 06:32:10",
 "Build Type":"Linux/clang/Release",
 "Chain Id":"1",
 "FISCO-BCOS Version":"2.5.0",
 "Git Branch":"HEAD",
 "Git Commit Hash":"72c6d770e5cf0f4197162d0e26005ec03d30fcfe",
 "Supported Version":"2.5.0"
}
acquire node connection information
[group:1]> getPeers
[
 {
 "IPAndPort":"127.0.0.1:49948",
 "NodeID":"b5872eff0569903d71330ab7bc85c5a8be03e80b70746ec33cafe27cc4f6f8a71f8c84fd8af9d7912cb5ba068901fe4131ef69b74cc773cdfb318ab11968e41f",
 "Topic":[]
 },
 {
 "IPAndPort":"127.0.0.1:49940",
 "NodeID":"912126291183b673c537153cf19bf5512d5355d8edea7864496c257630d01103d89ae26d17740daebdd20cbc645c9a96d23c9fd4c31d16bccf1037313f74bb1d",
 "Topic":[]
 },
 {
 "IPAndPort":"127.0.0.1:49932",
 "NodeID":"db75ab16ed7afa966447c403ca2587853237b0d9f942ba6fa551dc67ed6822d88da01a1e4da9b51aedafb8c64e9d208d9d3e271f8421f4813dcbc96a07d6a603",
 "Topic":[]
 }
]

To deploy or call HelloWorld contract

HelloWorld contract

HelloWorld contract offers 2 interfaces which are get() and set() and are used to acquire/set contract variety name. The contract content is as below:

pragma solidity ^0.4.24;

contract HelloWorld {
 string name;

 function HelloWorld() {
 name = "Hello, World!";
 }

 function get()constant returns(string) {
 return name;
 }

 function set(string n) {
 name = n;
 }
}

Deploy HelloWorld contract

For quick experience, the console comes with HelloWorld contract and is placed under console folder contracts/solidity/HelloWorld.sol. So, users only have to deploy it using the following command.

input the following instruction in console, if it is deployed successfully, the contract address will be returned
[group:1]> deploy HelloWorld
transaction hash: 0xd0305411e36d2ca9c1a4df93e761c820f0a464367b8feb9e3fa40b0f68eb23fa
contract address:0xb3c223fc0bf6646959f254ac4e4a7e355b50a344

Call HelloWorld contract

check the current block number
[group:1]> getBlockNumber
1

call get interface to acquire name variety, the contract address here is the returned address of deploy instruction
[group:1]> call HelloWorld 0xb3c223fc0bf6646959f254ac4e4a7e355b50a344 get

Return code: 0
description: transaction executed successfully
Return message: Success

Return values:
[
 "Hello,World!"
]

check the current block number, it remains the same, because get interface will not change the ledger status
[group:1]> getBlockNumber
1

call set to set name
[group:1]> call HelloWorld 0xb3c223fc0bf6646959f254ac4e4a7e355b50a344 set "Hello, FISCO BCOS"
transaction hash: 0x7e742c44091e0d6e4e1df666d957d123116622ab90b718699ce50f54ed791f6e

transaction status: 0x0
description: transaction executed successfully

Output
Receipt message: Success
Return message: Success

Event logs
Event: {}

check the current block number again, if it increased, then it has generated block and the ledger status is changed
[group:1]> getBlockNumber
2

call get interface to acquire name variety, check if the setting is valid
[group:1]> call HelloWorld 0xb3c223fc0bf6646959f254ac4e4a7e355b50a344 get

Return code: 0
description: transaction executed successfully
Return message: Success

Return values:
[
 "Hello,FISCO BCOS"
]

log out console
[group:1]> quit

 Build the first blockchain application

Build the first blockchain application

This chapter will introduce a whole process of business application scenario development based on FISCO BCOS blockchain. The introduce includes business scenario analysis, contract design implementation, contract compilation, and blockchain development. Finally, we introduce an application module implementation which is to implement calling access to the contract on blockchain through the Java SDK we provide.

This tutorial requires user to be familiar with the Linux operating environment, has the basic skills of Java development, is able to use the Gradle tool, and is familiar with Solidity syntax [https://solidity.readthedocs.io/en/latest/].

Through the tutorial, you will learn the following:

	How to express the logic of a business scenario in the form of a contract

	How to convert Solidity contract into Java class

	How to configure Java SDK

	How to build an application and integrate Java SDK into application engineering

	How to call the contract interface through Java SDK, and to understand its principle

The full project source code for the sample is provided in the tutorial and users can quickly develop their own applications based on it.

Important

Please refer to Installation documentation to complete the construction of the FISCO BCOS blockchain and the download of the console. The operation in this tutorial is assumed to be carried out in the environment of the documentation building.

Sample application requirements

Blockchain is naturally tamper-proof and traceable. These characteristics make it more attractive to the financial sector. This article will provide an easy example of asset management development and ultimately achieve the following functions:

	Ability to register assets on blockchain

	Ability to transfer funds from different accounts

	Ability to check the amount of assets in the account

Contract design and implementation

When developing an application on blockchain, for combining with business requirements, it is first necessary to design the corresponding smart contract to determine the storage data that contract needs, and on this basis, to determine the interface provided by the smart contract. Finally, to specifically implement each interface.

Storage design

FISCO BCOS provides a contract CRUD interface development model, which can create table through contracts, and add, delete, and modify the created table. For this application, we need to design a table t_asset for storage asset management. The table’s fields are as follows:

	account: primary key, asset account (string type)

	asset_value: asset amount (uint256 type)

account is the primary key, which is the field that needs to be passed when the t_asset table is operated. The blockchain queries the matching records in the table according to the primary key field. The example of t_asset table is as follow:

	account
	asset_value

	Alice
	10000

	Bob
	20000

Interface design

According to the design goals of the business, it is necessary to implement asset registration, transfer, and query functions. The interfaces of the corresponding functions are as follows:

// query the amount of assets
function select(string account) public constant returns(int256, uint256)
// asset registration
function register(string account, uint256 amount) public returns(int256)
// asset transfer
function transfer(string from_asset_account, string to_asset_account, uint256 amount) public returns(int256)

Full source

pragma solidity ^0.4.24;

import "./Table.sol";

contract Asset {
 // event
 event RegisterEvent(int256 ret, string account, uint256 asset_value);
 event TransferEvent(int256 ret, string from_account, string to_account, uint256 amount);

 constructor() public {
 // create a t_asset table in the constructor
 createTable();
 }

 function createTable() private {
 TableFactory tf = TableFactory(0x1001);
 // asset management table, key : account, field : asset_value
 // | account(primary key) | amount |
 // |-------------------- |-------------------|
 // | account | asset_value |
 // |---------------------|-------------------|
 //
 // create table
 tf.createTable("t_asset", "account", "asset_value");
 }

 function openTable() private returns(Table) {
 TableFactory tf = TableFactory(0x1001);
 Table table = tf.openTable("t_asset");
 return table;
 }

 /*
 description: query asset amount according to asset account

 parameter:
 account: asset account

 return value：
 parameter1： successfully returns 0, the account does not exist and returns -1
 parameter2： valid when the first parameter is 0, the amount of assets
 */
 function select(string account) public constant returns(int256, uint256) {
 // open table
 Table table = openTable();
 // query
 Entries entries = table.select(account, table.newCondition());
 uint256 asset_value = 0;
 if (0 == uint256(entries.size())) {
 return (-1, asset_value);
 } else {
 Entry entry = entries.get(0);
 return (0, uint256(entry.getInt("asset_value")));
 }
 }

 /*
 description : asset registration
 parameter ：
 account : asset account
 amount : asset amount
 return value：
 0 regist successfully
 -1 asset account already exists
 -2 other error
 */
 function register(string account, uint256 asset_value) public returns(int256){
 int256 ret_code = 0;
 int256 ret= 0;
 uint256 temp_asset_value = 0;
 // to query whather the account exists
 (ret, temp_asset_value) = select(account);
 if(ret != 0) {
 Table table = openTable();

 Entry entry = table.newEntry();
 entry.set("account", account);
 entry.set("asset_value", int256(asset_value));
 // insert
 int count = table.insert(account, entry);
 if (count == 1) {
 // true
 ret_code = 0;
 } else {
 // false. no permission or other error
 ret_code = -2;
 }
 } else {
 // account already exists
 ret_code = -1;
 }

 emit RegisterEvent(ret_code, account, asset_value);

 return ret_code;
 }

 /*
 description : asset transfer
 parameter ：
 from_account : transferred asset account
 to_account ：received asset account
 amount ： transferred amount
 return value：
 0 transfer asset successfully
 -1 transfe asset account does not exist
 -2 receive asset account does not exist
 -3 amount is insufficient
 -4 amount is excessive
 -5 other error
 */
 function transfer(string from_account, string to_account, uint256 amount) public returns(int256) {
 // query transferred asset account information
 int ret_code = 0;
 int256 ret = 0;
 uint256 from_asset_value = 0;
 uint256 to_asset_value = 0;

 // whather transferred asset account exists?
 (ret, from_asset_value) = select(from_account);
 if(ret != 0) {
 ret_code = -1;
 // not exist
 emit TransferEvent(ret_code, from_account, to_account, amount);
 return ret_code;

 }

 // whather received asset account exists?
 (ret, to_asset_value) = select(to_account);
 if(ret != 0) {
 ret_code = -2;
 // not exist
 emit TransferEvent(ret_code, from_account, to_account, amount);
 return ret_code;
 }

 if(from_asset_value < amount) {
 ret_code = -3;
 // amount of transferred asset account is insufficient
 emit TransferEvent(ret_code, from_account, to_account, amount);
 return ret_code;
 }

 if (to_asset_value + amount < to_asset_value) {
 ret_code = -4;
 // amount of received asset account is excessive
 emit TransferEvent(ret_code, from_account, to_account, amount);
 return ret_code;
 }

 Table table = openTable();

 Entry entry0 = table.newEntry();
 entry0.set("account", from_account);
 entry0.set("asset_value", int256(from_asset_value - amount));
 // update transferred account
 int count = table.update(from_account, entry0, table.newCondition());
 if(count != 1) {
 ret_code = -5;
 // false? no permission or other error?
 emit TransferEvent(ret_code, from_account, to_account, amount);
 return ret_code;
 }

 Entry entry1 = table.newEntry();
 entry1.set("account", to_account);
 entry1.set("asset_value", int256(to_asset_value + amount));
 // update received account
 table.update(to_account, entry1, table.newCondition());

 emit TransferEvent(ret_code, from_account, to_account, amount);

 return ret_code;
 }
}

Note: The implementation of the Asset.sol contract requires to introduce a system contract interface file Table.sol provided by FISCO BCOS. The system contract file’s interface is implemented by the underlying FISCO BCOS. When a business contract needs to operate CRUD interface, it is necessary to introduce the interface contract file. Table.sol contract detailed interface reference here.

Contract compiling

In the previous section, we designed the storage and interface of the contract Asset.sol according to business requirements, and implemented them completely. However, Java program cannot directly call Solidity contract. The Solidity contract file needs to be compiled into a Java file first.

The console provides a compilation tool that stores the Asset.sol contract file in the console/contract/solidity directory. Compile with the sol2java.sh script provided in the console directory, as follows:

$ mkdir -p ~/fisco
download console
$ cd ~/fisco && curl -#LO https://github.com/FISCO-BCOS/console/releases/download/v2.9.2/download_console.sh && bash download_console.sh
switch to the fisco/console/ directory
$ cd ~/fisco/console/
compile the contract, specify a Java package name parameter later, you can specify the package name according to the actual project path.
$./sol2java.sh -p org.fisco.bcos.asset.contract

After successful operation, the java, abi, and bin directories will be generated in the console/contracts/sdk directory as shown below.

|-- abi # The generated abi directory, which stores the abi file generated by Solidity contract compilation.
| |-- Asset.abi
| |-- Table.abi
|-- bin # The generated bin directory, which stores the bin file generated by Solidity contract compilation.
| |-- Asset.bin
| |-- Table.bin
|-- contracts # The source code file that stores Solidity contract. Copy the contract that needs to be compiled to this directory.
| |-- Asset.sol # A copied Asset.sol contract, depends on Table.sol
| |-- Table.sol # The contract interface file that implements the CRUD operation
|-- java # Storing compiled package path and Java contract file
| |-- org
| |--fisco
| |--bcos
| |--asset
| |--contract
| |--Asset.java # Java file generated by the Asset.sol contract
| |--Table.java # Java file generated by the Table.sol contract
|-- sol2java.sh

The org/fisco/bcos/asset/contract/ package path directory is generated in the java directory. The directory contains two files Asset.java and Table.java, where Asset.java is the file required by the Java application to call the Asset.sol contract.

Asset.java’s main interface:

package org.fisco.bcos.asset.contract;

public class Asset extends Contract {
 // Asset.sol contract transfer interface generation
 public TransactionReceipt transfer(String from_account, String to_account, BigInteger amount);
 // Asset.sol contract register interface generation
 public TransactionReceipt register(String account, BigInteger asset_value);
 // Asset.sol contract select interface generation
 public Tuple2<BigInteger, BigInteger> select(String account) throws ContractException;

 // Load the Asset contract address, to generate Asset object
 public static Asset load(String contractAddress, Client client, CryptoKeyPair credential);

 // Deploy Assert.sol contract, to generate Asset object
 public static Asset deploy(Client client, CryptoKeyPair credential) throws ContractException;
}

The load and deploy functions are used to construct the Asset object, and the other interfaces are used to call the interface of the corresponding solidity contract. The detailed use will be introduced below.

SDK configuration

We provide a Java engineering project for development. First, get the Java engineering project:

$ mkdir -p ~/fisco
get the Java project project archive
$ cd ~/fisco
$ curl -#LO https://github.com/FISCO-BCOS/LargeFiles/raw/master/tools/asset-app.tar.gz
extract the Java project project asset-app directory
$ tar -zxf asset-app.tar.gz

Note

	If the asset-app.tar.gz cannot be downloaded for a long time due to network problems, try curl -#LO https://osp-1257653870.cos.ap-guangzhou.myqcloud.com/FISCO-BCOS/FISCO-BCOS/tools/asset-app.tar.gz

The directory structure of the asset-app project is as follows:

|-- build.gradle // gradle configuration file
|-- gradle
| |-- wrapper
| |-- gradle-wrapper.jar // related code implementation for downloading Gradle
| |-- gradle-wrapper.properties // Configuration information used by the wrapper, such as the version of gradle
|-- gradlew // shell script for executing wrapper commands under Linux or Unix
|-- gradlew.bat // batch script for executing wrapper commands under Windows
|-- src
| |-- main
| | |-- java
| | |-- org
| | |-- fisco
| | |-- bcos
| | |-- asset
| | |-- client // the client calling class
| | |-- AssetClient.java
| | |-- contract // the Java contract class
| | |-- Asset.java
| |-- test
| |-- resources // resource files
| |-- applicationContext.xml // project configuration file
| |-- contract.properties // file that stores the deployment contract address
| |-- log4j.properties // log configuration file
| |-- contract // Solidity contract files
| |-- Asset.sol
| |-- Table.sol
|
|-- tool
 |-- asset_run.sh // project running script

Project introduced Java SDK

The project’s build.gradle file has been introduced to Java SDK and no need to be modified. The introduction method is as follows:

	You need to add maven remote repository to the build.gradle file:

repositories {
 mavenCentral()
 maven {
 url "http://maven.aliyun.com/nexus/content/groups/public/"
 }
 maven { url "https://oss.sonatype.org/content/repositories/snapshots" }
}

	introduce the Java SDK jar package

compile ('org.fisco-bcos.java-sdk:fisco-bcos-java-sdk:2.7.2')

Certificate and configuration file

	Blockchain node certificate configuration

Copy the SDK certificate corresponding to the blockchain node

go to the ~ directory
copy the node certificate to the project's resource directory
$ cd ~/fisco
$ cp -r nodes/127.0.0.1/sdk/* asset-app/src/test/resources/conf
if you want to run this app in IDE, copy the certificate to the main resource directory
$ mkdir -p asset-app/src/main/resources/conf
$ cp -r nodes/127.0.0.1/sdk/* asset-app/src/main/resources/conf

	applicationContext.xml

Note:

If the channel_listen_ip (If the node version is less than v2.3.0, check listen_ip) set in the chain is 127.0.0.1 or 0.0.0.0 and the channel_listen_port is 20200, the applicationContext.xml configuration does not need to be modified. If the configuration of blockchain node is changed, you need to modify applicationContext.xml.

Business development

We’ve covered how to introduce and configure the Java SDK in your own project. This section describes how to invoke a contract through a Java program, as well as an example asset management note. The asset-app project already contains the full source code of the sample, which users can use directly. Now introduces the design and implementation of the core class AssetClient.

AssetClient.java: The deployment and invocation of the contract is implemented by calling Asset.java, The path /src/main/java/org/fisco/bcos/asset/client, the initialization and the calling process are all in this class.

	initialization

The main function of the initialization code is to construct the Web3j and Credentials’ objects, which are needed to be used when creating the corresponding contract class object (calling the contract class’s deploy or load function).

@SuppressWarnings("resource")
ApplicationContext context =
 new ClassPathXmlApplicationContext("classpath:applicationContext.xml");
bcosSDK = context.getBean(BcosSDK.class);
// init the client that can send requests to the group one
client = bcosSDK.getClient(1);
// create the keyPair
cryptoKeyPair = client.getCryptoSuite().createKeyPair();
client.getCryptoSuite().setCryptoKeyPair(cryptoKeyPair);
logger.debug("create client for group1, account address is " + cryptoKeyPair.getAddress());

	construct contract class object

Contract objects can be initialized using the deploy or load functions, which are used in different scenarios. The former applies to the initial deployment contract, and the latter is used when the contract has been deployed and the contract address is known.

// deploy contract
Asset asset = Asset.deploy(client, cryptoKeyPair);
// load contract address
Asset asset = Asset.load(contractAddress, client, cryptoKeyPair);

	interface calling

Use the contract object to call the corresponding interface and handle the returned result.

// select interface calling
 Tuple2<BigInteger, BigInteger> result = asset.select(assetAccount);
// register interface calling
TransactionReceipt receipt = asset.register(assetAccount, amount);
// transfer interface
TransactionReceipt receipt = asset.transfer(fromAssetAccount, toAssetAccount, amount);

Running

So far we have introduced all the processes of the asset management application using the blockchain and implemented the functions. Then we can run the project and test whether the function is normal.

	compilation

switch to project directory
$ cd ~/asset-app
compile project
$./gradlew build

After the compilation is successful, the dist directory will be generated under the project root directory. There is an asset_run.sh script in the dist directory to simplify project operation. Now let’s start by verifying the requirements set out in this article.

	deploy the Asset.sol contract

enter dist directory
$ cd dist
$ bash asset_run.sh deploy
Deploy Asset successfully, contract address is 0xd09ad04220e40bb8666e885730c8c460091a4775

	register asset

$ bash asset_run.sh register Alice 100000
Register account successfully => account: Alice, value: 100000
$ bash asset_run.sh register Bob 100000
Register account successfully => account: Bob, value: 100000

	query asset

$ bash asset_run.sh query Alice
account Alice, value 100000
$ bash asset_run.sh query Bob
account Bob, value 100000

	transfer asset

$ bash asset_run.sh transfer Alice Bob 50000
Transfer successfully => from_account: Alice, to_account: Bob, amount: 50000
$ bash asset_run.sh query Alice
account Alice, value 50000
$ bash asset_run.sh query Bob
account Bob, value 150000

Summary: So far, we have built an application based on the FISCO BCOS Alliance blockchain through contract development, contract compilation, SDK configuration and business development.

 More Tutorials

More Tutorials

This chapter will introduce the basic process and related core concept for quick development of DApp on FISCO BCOS. We will also provide company users a toolkit tutorial for easier development and deployment.

 Build Blockchain Network

Build Blockchain Network

Setup and deploy blockchain

	
	Getting Executables
	
	Download binary, use docker images and complie source code.

	
	Chain building script
	
	Options and node directory

	
	Certificate description
	
	Certificate format, role and generating process.

	
	Configuration files and configuration items
	
	All configure files’ options

	
	Deploy Multi-Group Blockchain System
	
	The guide of deploying Multi-Group Blockchain

	
	Distributed storage
	
	The guide of using distributed storage feature

Use Blockchain

	
	Console
	
	Configuration and options

	
	Manage blockchain accounts
	
	Account generation and using guide.

	
	SDK
	
	The SDK to call smart from outside

	
	AMOP
	
	Send messages between SDKs

Write smart contracts

	
	Smart contract development
	
	Solidity smart contract and precompiled contract

	
	Parallel contract
	
	The guide of writing parallel contract

Management and Security

	
	Group members management
	
	Add/Remove members(nodes) of group

	
	Permission control
	
	Access control among accounts.

	
	CA blacklist
	
	Deny connection from certain node.

	
	Storage security
	
	Encrypt data during writing into disk

	
	Privacy protection
	
	Integrate homomorphic encryption and group/ring signature algorithms in precompiled contracts

Others

	
	OSCCA-approved cryptography
	
	OSCCA-approved cryptography node and SDK

Important

	
	Important features
	
	Deploy Multi-Group Blockchain System

	Parallel contract

	Distributed storage

 Hardware requirements

Hardware requirements

Note

	FISCO BCOS supports x86_ 64 and aarch64 (ARM) architecture CPU

	Since multiple nodes share network bandwidth, CPU, and memory resources, it is not recommended to configure too much nodes on one machine in order to ensure the stability of service.

The following table is a recommended configuration for single-group and single-node. Node consumes resources in a linear relationship with the number of groups. You can configure the number of nodes reasonably according to actual business requirement and machine resource.

Supported Platforms

	CentOS 7.2+

	Ubuntu 18.04

	macOS 10.14+

	Kylin OS V10

	deepin

 Getting Executables

Getting Executables

Users can choose any of the following methods to get FISCO BCOS executable. It is recommended to download the precompiled binaries from GitHub.

	The official statically linked precompiled files can be used on Ubuntu 16.04 and CentOS 7.2 version or later.

	docker image is provided officially, welcome to use. docker-hub address [https://hub.docker.com/r/fiscoorg/fiscobcos]

	You can compile from the source code, visit here source code compilation.

Downloading precompiled fisco-bcos

The statically linked precompiled executable provided has been tested on Ubuntu 16.04 and CentOS 7. Please download the latest released pre-compiled executable from the Release [https://github.com/FISCO-BCOS/FISCO-BCOS/releases].

docker image

From v2.0.0 version, we provide the docker image for the tag version. Corresponding to the master branch, we provide image of latest tag. For more docker tags please refer tohere [https://hub.docker.com/r/fiscoorg/fiscobcos/tags].

build_chain.sh script adds the -d option to provide docker mode building for developers to deploy. For details, please refer to here.

Note

For using build_chain.sh script easily, we start docker by using --network=host network mode. Users may need to customize and modify according to their own network scenarios when they actually use.

Source code compilation

Note

The source code compilation is suitable for the experienced developers. You are required to download all library dependencies during compilation. Network connection would required and would take 5-20 minutes in total.

FISCO BCOS is using generic CMake [https://cmake.org] to generate platform-specific build files, which means the steps are similar for most operating systems:

	Install build tools and dependent package (depends on platform).

	Clone code from FISCO BCOS [https://github.com/FISCO-BCOS/FISCO-BCOS/tree/master-2.0].

	Run cmake to generate the build file and compile.

Installation dependencies

	Ubuntu

Ubuntu 16.04 or later is recommended. The versions below 16.04 have not been tested. You will require to have the build tools build tools and libssl for compiling the source code.

sudo apt install -y g++ libssl-dev openssl cmake git build-essential autoconf texinfo flex patch bison libgmp-dev zlib1g-dev

	CentOS

CentOS7 version or later is recommended.

$ sudo yum install -y epel-release centos-release-scl
$ sudo yum install -y openssl-devel openssl cmake3 gcc-c++ git flex patch bison gmp-static devtoolset-7

	macOS

xcode10 version and above are recommended. macOS dependent package installation depends on Homebrew [https://brew.sh/].

brew install openssl git flex bison gmp

Code clone

git clone https://github.com/FISCO-BCOS/FISCO-BCOS.git

If you have network issue for exec the command above, please try:
git clone https://gitee.com/FISCO-BCOS/FISCO-BCOS.git

cd FISCO-BCOS && git checkout master-2.0

Compile

After compilation, binary files are located at FISCO-BCOS/build/bin/fisco-bcos.

$ cd FISCO-BCOS
$ git checkout master-2.0
$ mkdir -p build && cd build
$ source /opt/rh/devtoolset-7/enable # CentOS Please execute
please use cmake3 for CentOS
$ cmake ..
#To add -j4 to accelerate compilation by 4 compilation processes
In macOS, if it raises "ld: warning: direct access" when execute make command, please ignore it
$ make

Note

	If dependency libs cannot be downloaded for a long time due to network problems, try https://gitee.com/FISCO-BCOS/LargeFiles/tree/master/libs , and put in FISCO-BCOS/deps/src/

Compile options

	TESTS, off by default, unit test compilation flag. To enable it, use cmake -DTESTS=on ..

	DEMO, off by default, test program compilation switch. To open it through cmake -DDEMO=on ...

	TOOL, off by default, tools program compilation switch. To open it throughcmake -DTOOL=on ...

	ARCH_NATIVE, off by default, optimize code according to local CPU architecture if on.

	BUILD_STATIC，off by default, static compilation switch, only supports Ubuntu. To open it through cmake -DBUILD_STATIC=on ...

	Generate source documentation.

Install Doxygen
$ sudo apt install -y doxygen graphviz
Generate source documentation locate at build/doc
$ make doc

 Certificate description

Certificate description

FISCO BCOS network adopts a CA-oriented access mechanism to support any multi-level certificate structure for ensuring information confidentiality, authentication, integrity, and non-repudiation.

FISCO BCOS uses the x509 protocol certificate format [https://en.wikipedia.org/wiki/X.509]. According to the existing business scenario, a three level certificate structure is adopted by default, and from top to bottom, the three levels are chain certificate, agency certificate, and node certificate respective.

In multi-group architecture, a chain has a chain certificate and a corresponding chain private key, and the chain private key is jointly managed by alliance chain committee. Alliance chain committee can use the agency’s certificate request file agency.csr to issue the agency certificate agency.crt.

Agency private key held by the agency administrator can issue node certificate to the agency’s subordinate nodes.

Node certificate is the credential of node identity and uses this certificate to establish an SSL connection with other nodes for encrypted communication.

sdk certificate is a voucher for sdk communicating with node. Agency generates sdk certificate that allows sdk to do that.

The files’ suffixes of FISCO BCOS node running are described as follows:

	Suffix
	Description

	.key
	private file

	.crt
	certificate file

	.csr
	certificate request file

Role definition

There are four roles in the FISCO BCOS certificate structure, namely the alliance chain committee administrator, agency, node, and SDK.

Alliance chain committee

	The alliance chain committee manages private key of chain, and issues agency certificate according to agency’s certificate request document agency.csr.

ca.crt chain certificate
ca.key chain private key

When FISCO BCOS performs SSL encrypted communication, only the node with the same chain certificate ca.crt can establish a connection.

Agency

	Agency has an agency private key that can issue node certificate and SDK certificate.

ca.crt chain certificate
agency.crt agency certificate
agency.csr agency certificate request file
agency.key agency private key

Node/SDK

	FISCO BCOS nodes include node certificates and private keys for establishing SSL encrypted connection among nodes;

	SDK includes SDK certificate and private key for establishing SSL encrypted connection with blockchain nodes.

ca.crt #chain certificate
node.crt #node certificate
node.key #node private key
sdk.crt #SDK certificate
sdk.key #SDK private key

Node certificate node.crt includes the node certificate and the agency certificate information. When the node communicates with other nodes/SDKs, it will sign the message with its own private key node.key, and send its own node.crt to nodes/SDKs to verify.

Certificate generation process

FISCO BCOS certificate generation process is as follows. Users can also use the Enterprise Deployment Tool to generate corresponding certificate

Chain certificate generation

	Alliance chain committee uses openssl command to request chain private key ca.key, and generates chain certificate ca.crt according to ca.key.

Agency certificate generation

	Agency uses openssl command to generate agency private key agency.key

	Agency uses private key agency.key to get agency certificate request file agency.csr, and sends agency.csr to alliance chain committee.

	Alliance chain committee uses chain private key ca.key to generate the agency certificate agency.crt according to the agency certificate request file agency.csr. And send agency certificate agency.crt to corresponding agency.

Node/SDK certificate generation

	The node generates the private key node.key and the certificate request file node.csr. The agency administrator uses the private key agency.key and the certificate request file node.csr to issue the certificate to the node/SDK.

TODO

 cfca

cfca

TODO

 CA blacklist and whitelist

CA blacklist and whitelist

This documents tells you how to use CA blacklist and whitelist. Read the design of CA blacklist and whitelist for more.

CA blacklist

Use blacklist to reject connection coming from certain NodeIDs.

Configure blacklist

Modify config.ini

[certificate_blacklist]
 ; crl.0 should be nodeid, nodeid's length is 128
 ;crl.0=

Restart the node.

$ bash stop.sh && bash start.sh

Check connections.

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}' http://127.0.0.1:8545 |jq

CA whitelist

Use whitelist to reject all connections which NodeID is not belong to whitelist.

Configure whitelist

Modifyconfig.ini，If whitelist is empty, the whitelist is disable and accept all connections.

[certificate_whitelist]
 ; cal.0 should be nodeid, nodeid's length is 128
 cal.0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
 cal.1=f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0

If the node is not started, use start.sh. The whitelist configuration is loaded during starting up. If the node has started, use reload_whitelist.sh . The whitelist configureation is refresh and reject disconnect the node not belongs to whitelist.

If the node is not started.
$ bash start.sh
If the node is started.
$ cd scripts
$ bash reload_whitelist.sh
node_127.0.0.1_30300 is not running, use start.sh to start and enable whitelist directlly.

Check connections.

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}' http://127.0.0.1:8545 |jq

Usage: Public CA

If we build chain using the certificate coming from CFCA. This chain’s CA is CFCA. This CA is public and can be used to build by other blockchain. Cause different chain can connect each other by using a same CA. In this case, we need to use whitelist to reject the connection coming from other blockchain.

Build chain an enable whitelist

	Build chain.

	Get every nodes’ NodeID.

	Add every nodes’ NodeID into every Node’s whitelist.

	Start the node or use reload_whitelist.sh to reconfigure whitelist.

Add node in blockchain and update whitelist

	Build a node based on a blockchain.

	Get NodeID of new node.

	Append new node’s NodeID into every Node’s whitelist.

	Copy old node’s whitelist to new node.

	Reconfigure whitelist using reload_whitelist.sh.

	Start new node.

	Add new node into group (addSealer or addObserver)

Examples

Build blockchain

Build a blockchain contains 4 nodes.

$ bash build_chain.sh -l 127.0.0.1:4

Get NodeIDs of these nodes.

$ cat node*/conf/node.nodeid
219b319ba7b2b3a1ecfa7130ea314410a52c537e6e7dda9da46dec492102aa5a43bad81679b6af0cd5b9feb7cfdc0b395cfb50016f56806a2afc7ee81bbb09bf
7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0
38158ef34eb2d58ce1d31c8f3ef9f1fa829d0eb8ed1657f4b2a3ebd3265d44b243c69ffee0519c143dd67e91572ea8cb4e409144a1865f3e980c22d33d443296

The NodeIDs are ：

	node0: 219b319b….

	node1: 7718df20….

	node2: f306eb10….

	node3: 38158ef3….

Start all nodes.

$ cd node/127.0.0.1/
$ bash start_all.sh

Check connections. Use node0 as example. (8545 is the rpc port of node0).

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}' http://127.0.0.1:8545 |jq

We can see, node0 has connected with 3 nodes.

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "Agency": "agency",
 "IPAndPort": "127.0.0.1:62774",
 "Node": "node3",
 "NodeID": "38158ef34eb2d58ce1d31c8f3ef9f1fa829d0eb8ed1657f4b2a3ebd3265d44b243c69ffee0519c143dd67e91572ea8cb4e409144a1865f3e980c22d33d443296",
 "Topic": []
 },
 {
 "Agency": "agency",
 "IPAndPort": "127.0.0.1:62766",
 "Node": "node1",
 "NodeID": "7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb",
 "Topic": []
 },
 {
 "Agency": "agency",
 "IPAndPort": "127.0.0.1:30302",
 "Node": "node2",
 "NodeID": "f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0",
 "Topic": []
 }
]
}

Use blacklist: Reject connection from node1 to node0

Add node1’s NodeID into node0’s config.ini.

vim node0/config.ini

Like (Let whitelist empty):

[certificate_blacklist]
 ; crl.0 should be nodeid, nodeid's length is 128
 crl.0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb

[certificate_whitelist]
 ; cal.0 should be nodeid, nodeid's length is 128
 ; cal.0=

Restart to enable.

$ cd node0
$ bash stop.sh && bash start.sh

Check connections.

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}' http://127.0.0.1:8545 |jq

We can see node0 has connected with 2 nodes. Haven’t connected with node1.

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "Agency": "agency",
 "IPAndPort": "127.0.0.1:30303",
 "Node": "node3",
 "NodeID": "38158ef34eb2d58ce1d31c8f3ef9f1fa829d0eb8ed1657f4b2a3ebd3265d44b243c69ffee0519c143dd67e91572ea8cb4e409144a1865f3e980c22d33d443296",
 "Topic": []
 },
 {
 "Agency": "agency",
 "IPAndPort": "127.0.0.1:30302",
 "Node": "node2",
 "NodeID": "f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0",
 "Topic": []
 }
]
}

Use whitelist: Reject all connection except node1 and node 2

Add NodeIDs of node1 and node2 into node0’s config.ini.

$ vim node0/config.ini

Let blacklist empty and add NodeIDs of node1 and node2 into whitelist

[certificate_blacklist]
 ; crl.0 should be nodeid, nodeid's length is 128
 ;crl.0=

[certificate_whitelist]
 ; cal.0 should be nodeid, nodeid's length is 128
 cal.0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
 cal.1=f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0

Restart the node.

$ bash stop.sh && bash start.sh

Check connections.

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}' http://127.0.0.1:8545 |jq

We can see, the node0 has connected with 2 nodes, not connected with node1.

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "Agency": "agency",
 "IPAndPort": "127.0.0.1:30302",
 "Node": "node2",
 "NodeID": "f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0",
 "Topic": []
 },
 {
 "Agency": "agency",
 "IPAndPort": "127.0.0.1:30301",
 "Node": "node1",
 "NodeID": "7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb",
 "Topic": []
 }
]
}

Use blacklist and whitelist: The priority of blacklist is higher than whitelist

Modify config.ini of node0.

$ vim node0/config.ini

Add node1 into blacklist and add node1, node2 into whitelist. Both blacklist and whitelist has configured node1.

[certificate_blacklist]
 ; crl.0 should be nodeid, nodeid's length is 128
 crl.0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb

[certificate_whitelist]
 ; cal.0 should be nodeid, nodeid's length is 128
 cal.0=7718df20f0f7e27fdab97b3d69deebb6e289b07eb7799c7ba92fe2f43d2efb4c1250dd1f11fa5b5ce687c8283d65030aae8680093275640861bc274b1b2874cb
 cal.1=f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0

Restart the node.

$ bash stop.sh && bash start.sh

Check connections.

$ curl -X POST --data '{"jsonrpc":"2.0","method":"getPeers","params":[1],"id":1}' http://127.0.0.1:8545 |jq

We can see. Although node1 has been added into whitelist, node0 hasn’t connected with node1. Because node1 has also added into blacklist. The priority of blacklist is higher than whitelist.

{
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "Agency": "agency",
 "IPAndPort": "127.0.0.1:30302",
 "Node": "node2",
 "NodeID": "f306eb1066ceb9d46e3b77d2833a1bde2a9899cfc4d0433d64b01d03e79927aa60a40507c5739591b8122ee609cf5636e71b02ce5009f3b8361930ecc3a9abb0",
 "Topic": []
 }
]
}

 Configuration files and configuration items

Configuration files and configuration items

FISCO BCOS supports multiple ledger. Each chain includes multiple unique ledgers, whose data among them are isolated from each other. And the transaction processing among groups are also isolated. Each node includes a main configuration config.ini and multiple ledger configurations group.group_id.genesis, group.group_id.ini.

	config.ini: The main configuration file, mainly configures with RPC, P2P, SSL certificate, ledger configuration file path, compatibility and other information.

	group.group_id.genesis：group configurations file. All nodes in the group are consistent. After node launches, you cannot manually change the configuration including items like group consensus algorithm, storage type, and maximum gas limit, etc.

	group.group_id.ini：group variable configuration file, including the transaction pool size, etc.. All configuration changes are effective after node restarts.

Main configuration file config.ini

config.ini uses ini format. It mainly includes the configuration items like ** rpc, p2p, group, secure and log **.

Important

	The public IP addresses of the cloud host are virtual IP addresses. If listen_ip/jsonrpc_listen_ip/channel_listen_ip is filled in external network IP address, the binding fails. You must fill in 0.0.0.0.

	RPC/P2P/Channel listening port must be in the range of 1024-65535 and cannot conflict with other application listening ports on the machine.

	In order to facilitate development and experience, the reference configuration of listen_ip/channel_listen_ip is 0.0.0.0. For security reasons, please modify it to a safe listening address according to the actual business network situation, such as the internal IP or a specific external IP

Configure RPC

	channel_listen_ip: Channel listening IP, to facilitate node and SDK cross-machine deployment, the default setting is 0.0.0.0;

	jsonrpc_listen_ip：RPC listening IP, security considerations, the default setting is 127.0.0.1, if there is an external network access requirement, please monitor node external network IP or 0.0.0.0;

	channel_listen_port: Channel port, is corresponding to channel_listen_port in [Java SDK]](../sdk/sdk.html#id2) configuration;

	jsonrpc_listen_port: JSON-RPC port.

Note

For security and ease of use consideration, the latest configuration of v2.3.0 version splits listen_ip into jsonrpc_listen_ip and channel_listen_ip, but still retains the parsing function of listen_ip:

	Include only listen_ip in the configuration: The listening IPs of both RPC and Channel are configured listen_ip

	The configuration also contains listen_ip, channel_listen_ip, or jsonrpc_listen_ip: Priority is given to channel_listen_ip and jsonrpc_listen_ip. Configuration items that are not configured are replaced with the value of listen_ip

	Starting from v2.6.0, RPC module support IPV6.

RPC configuration example is as follows:

ipv4
[rpc]
 channel_listen_ip=0.0.0.0
 jsonrpc_listen_ip=127.0.0.1
 channel_listen_port=30301
 jsonrpc_listen_port=30302

ipv6
[rpc]
 channel_listen_ip=::1
 jsonrpc_listen_ip=::1
 channel_listen_port=30301
 jsonrpc_listen_port=30302

Configure P2P

Note

	In order to facilitate development and experience, the reference configuration of listen_ip is 0.0.0.0. For security reasons, please modify it to a safe listening address according to the actual business network situation, such as the internal IP or a specific external IP.

	Starting from v2.6.0, P2P module support IPV6.

The current version of FISCO BCOS must be configured with IP and Port of the connection node in the config.ini configuration. The P2P related configurations include:

	listen_ip: P2P listens for IP, to set 0.0.0.0 by default.

	listen_port: Node P2P listening port.

	node.*: All nodes’ IP:Port or DomainName:Port which need to be connected to node. This option supports domain names, but suggests users who need to use it manually compile source code [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/manual/get_executable.html#id2].

	enable_compress: Enable network compression configuration option. Configuring to true, indicates that network compression is enabled. Configuring to false, indicates that network compression is disabled. For details on network compression, please refer to [here](../design/features/network_compress .md).

P2P configuration example is as follows:

ipv4
[p2p]
 listen_ip=0.0.0.0
 listen_port=30300
 node.0=127.0.0.1:30300
 node.1=127.0.0.1:30304
 node.2=127.0.0.1:30308
 node.3=127.0.0.1:30312

ipv6
[p2p]
 listen_ip=::1
 listen_port=30300
 node.0=[::1]:30300
 node.1=[::1]:30304
 node.2=[::1]:30308
 node.3=[::1]:30312

Configure ledger file path

[group]To configure all group configuration paths which this node belongs:

	group_data_path: Group data storage path.

	group_config_path: Group configuration file path.

Node launches group according to all .genesis suffix files in the group_config_path path.

[group]
 ; All group data is placed in the node's data subdirectory
 group_data_path=data/
 ; Program automatically loads all .genesis files in the path
 group_config_path=conf/

Configure certificate information

For security reasons, communication among FISCO BCOS nodes uses SSL encrypted communication.[network_security] configure to SSL connection certificate information:

	data_path：Directory where the certificate and private key file are located.

	key: The data_path path that node private key relative to.

	cert: The data_path path that certificate node.crt relative to.

	ca_cert: ca certificate file path.

	ca_path: ca certificate folder, required for multiple ca.

	check_cert_issuer：sets whether the SDK can only connect the nodes with same organization, which is turned on by default（check_cert_issuer=true）.

[network_security]
 data_path=conf/
 key=node.key
 cert=node.crt
 ca_cert=ca.crt
 ;ca_path=

Configure blacklist

For preventing vice, FISCO BCOS allows nodes to configure untrusted node blacklist to reject establishing connections with these blacklist nodes. To configure blacklist through [crl]:

crl.idx: Blacklist node’s Node ID, can get from node.nodeid file; idx is index of the blacklist node.

For details of the blacklist, refer to [CA Blacklist].(./certificate_list.md)

Blacklist configuration example is as follows:

; certificate blacklist
[crl]
 crl.0=4d9752efbb1de1253d1d463a934d34230398e787b3112805728525ed5b9d2ba29e4ad92c6fcde5156ede8baa5aca372a209f94dc8f283c8a4fa63e
3787c338a4

Configure log information

FISCO BCOS supports boostlog [https://www.boost.org/doc/libs/1_63_0/libs/log/doc/html/index.html]. The log configuration is mainly located in the [log] configuration item of config.ini.

Log common configuration items

FISCO BCOS general log configuration items are as follows:

	enable: Enable/disable log. Set to true to enable log; set to false to disable log. set to true by default. For performance test, to set this option to false to reduce the impact of print log on test results

	log_path:log file patch.

	level: log level, currently includes 5 levels which are trace、debug、info、warning、error.After setting a certain log level, the log file will be entered with a log equal to or larger than this level.The log level is sorted from large to small by error > warning > info > debug > trace.

	max_log_file_size：Maximum size per log file, ** unit of measure is bytes, default is 200MB**

	flush：boostlog enables log auto-refresh by default. To improves system performance, it is recommended to set this value to false.

boostlog configuration example is as follows:

[log]
 ; whether to enable log, set to true by default
 enable=true
 log_path=./log
 level=info
 ; Maximum size per log file, default is 200MB
 max_log_file_size=200
 flush=true

Statistics log configuration items

Considering that the real-time monitoring system resource usage is very important in the actual production system, FISCO BCOS v2.4.0 introduced statistical logs, and the statistical log configuration items are located in config.ini.

Statistics log enable/disable configuration item

Considering that not all scenarios require network traffic and Gas statistics functions, FISCO BCOS provides the enable_statistic option inconfig.ini to turn on and off the function, which is turned off by default.

	log.enable_statistic is set to true to enable network traffic and gas statistics

	log.enable_statistic is set to false to disable network traffic and gas statistics

The configuration example is as follows:

[log]
 ; enable/disable the statistics function
 enable_statistic=false

Network statistics log output interval configuration item

Due to the periodic output of network statistics logs, log.stat_flush_interval is introduced to control the statistics interval and log output frequency, the unit is seconds, and the default is 60s. The configuration example is as follows:

[log]
 ; network statistics interval, unit is second, default is 60s
 stat_flush_interval=60

Configure chain attributes

Users can configure attributes of chain through [chain] in config.ini. The tool will be automatically generated when changing the configuration item to build chain, so users do not need to change it.

	id, the ID of chain, 1 by default;

	sm_crypto，in 2.5.0 and follow-up versions of FISCO BCOS, node can be launched in SM-Crypto mode or not through this configuration. true means SM-Crypto mode will be used and false means opposite, false by default；

	sm_crypto_channel，in 2.5.0 and follow-up versions of FISCO BCOS, connection between SDK and node can be established via SM-SSL. This configuration is used to indicate wheather to use this feature, false by default。

Configure node compatibility

All versions of FISCO BCOS 2.0+ are forward compatible. You can configure the compatibility of node through [compatibility] in config.ini. The tool will be automatically generated when changing the configuration item to build chain, so users do not need to change it.

	supported_version：The version of the current node running

Important

	view the latest version of FISCO BCOS currently supports through the command `./fisco-bcos –version | grep “Version” `

	In the blockchain node configuration generated by build_chain.sh, supported_version is configured to the current latest version of FISCO BCOS

	When upgrading an old node to a new node, directly replace the old FISCO BCOS binary with the latest FISCO BCOS binary, don’t modify supported_version

FISCO BCOS 2.2.0 node’s [compatibility] configuration is as follows:

[compatibility]
 supported_version=2.2.0

Optional configuration: Disk encryption

In order to protect node data, FISCO BCOS introduces Disk Encryption to ensure confidentiality. Disk Encryption Operation Manual Reference.

storage_security in config.ini is used to configure disk encryption. It mainly includes (for the operation of the disk encryption, please refer to Operation Manual):

	enable：whether to launch disk encryption, not to launch by default;

	key_manager_ip：Key Manager [https://github.com/FISCO-BCOS/key-manager]service’s deployment IP;

	key_manager_port：Key Manager [https://github.com/FISCO-BCOS/key-manager]service’s listening port；

	cipher_data_key: ciphertext of node data encryption key. For cipher_data_key generation, refer to disk encryption operation manual.

disk encryption configuration example is as follows:

[storage_security]
enable=true
key_manager_ip=127.0.0.1
key_manager_port=8150
cipher_data_key=ed157f4588b86d61a2e1745efe71e6ea

Optional configuration: flow control

In order to realize the flexible service of the blockchain system and prevent the mutual influence of resources between multiple groups, FISCO BCOS v2.5.0 introduces a flow control function, mainly including the request rate limit from SDK to nodes and the flow limit between nodes. Under [flow_control] of config.ini, it is disabled by default. For detailed design of flow control, please refer to here

SDK request rate limit configuration

The SDK request rate limit is located in the configuration item [flow_control].limit_req, which is used to limit the maximum number of requests from the SDK to the node per second. When the request to the node per second exceeds the value of the configuration item, the request will be rejected. The rate limit is disabled by default. To enable this function, you need to remove the ; in front of the limit_req configuration item. Enable the SDK request rate limit and design a node that can accept 2000 SDK requests per second as follows:

[flow_control]
 ; restrict QPS of the node
 limit_req=2000

Inter-node traffic limit configuration

In order to prevent block sync and AMOP message transmission from occupying too much network traffic and affecting the transmission of message packets of the consensus module, FISCO BCOS v2.5.0 introduces the function of inter-node traffic restriction. This configuration item is used to configure the average bandwidth of the node, but does not limit the flow of block consensus and transaction sync. When the average bandwidth of the node exceeds the configured value, block sync and AMOP message transmission will be paused.

	[flow_control].outgoing_bandwidth_limit: Node output bandwidth limit, the unit is Mbit/s, When the node output bandwidth exceeds this value, block sync will be paused, and the[AMOP](./ amop_protocol.md) request sent by the client will be rejected, but It will not limit the traffic of block consensus and transaction broadcast. This configuration item is disabled by default. To enable the traffic limit function, please remove the ; in front of the outgoing_bandwidth_limit configuration item.

The configuration example of enable the outgoing bandwidth traffic limit of the node and setting it to 5MBit/s is as follows:

[flow_control]
 ; Mb, can be a decimal
 ; when the outgoing bandwidth exceeds the limit, the block synchronization operation will not proceed
 outgoing_bandwidth_limit=5

Group system configuration instruction

Each group has unique separate configuration file, which can be divided into group system configuration and group variable configuration according to whether it can be changed after launch.
group system configuration is generally located in the .genesis suffix configuration file in node’s conf directory.

For example:group1 system configuration generally names as group.1.genesis. Group system configuration mainly includes the related configuration of group ID、consensus, storage and gas.

Important

When configuring the system configuration, you need to pay attention to:

	configuration group must be consistent: group system configuration is used to generate the genesis block (block 0), so the configurations of all nodes in the group must be consistent.

	node cannot be modified after launching ：system configuration has been written to the system table as genesis block, so it cannot be modified after chain initializes.

	After chain is initialized, even if genesis configuration is modified, new configuration will not take effect, and system still uses the genesis configuration when initializing the chain.

	Since genesis configuration requires all nodes in the group to be consistent, it is recommended to use build_chain to generate the configuration.

Group configuration

[group]configures group ID. Node initializes the group according to the group ID.

group2’s configuration example is as follows:

[group]
id=2

Consensus configuration

[consensus] involves consensus-related configuration, including:

	consensus_type：consensus algorithm type, currently supports PBFT, Raft and rPBFT. To use PBFT by default;

	max_trans_num：a maximum number of transactions that can be packed in a block. The default is 1000. After the chain is initialized, the parameter can be dynamically adjusted through Console;

	consensus_timeout: In the PBFT consensus process, the timeout period of each block execution, the default is 3s, the unit is seconds, the parameter can be dynamically adjusted through Console;

	node.idx：consensus node list, has configured with the [Node ID] of the participating consensus nodes. The Node ID can be obtained by the ${data_path}/node.nodeid file (where ${data_path} can be obtained by the configuration item [secure].data_path of the main configuration config.ini)

FISCO BCOS v2.3.0 introduced the rPBFT consensus algorithm, The rPBFT related configuration is as follows:

	epoch_sealer_num：The number of nodes participating in the consensus is selected in a consensus period. The default is the total number of all consensus nodes. After the chain is initialized, this parameter can be dynamically adjusted through [Console] (../console/console.html#setsystemconfigbykey)

	epoch_block_num：The number of blocks generated in a consensus period, the default is 1000, which can be dynamically adjusted through [Console] (../console/console.html#setsystemconfigbykey)

Note

rPBFT configuration does not take effect on other consensus algorithms

; Consensus protocol configuration
[consensus]
 ;consensus algorithm, currently supports PBFT(consensus_type=pbft) and Raft(consensus_type=raft)
 consensus_type=pbft
 ; maximum number of transactions in a block
 max_trans_num=1000
 epoch_sealer_num=4
 epoch_block_num=1000
 ; leader node's ID lists
 node.0=123d24a998b54b31f7602972b83d899b5176add03369395e53a5f60c303acb719ec0718ef1ed51feb7e9cf4836f266553df44a1cae5651bc6ddf50
e01789233a
 node.1=70ee8e4bf85eccda9529a8daf5689410ff771ec72fc4322c431d67689efbd6fbd474cb7dc7435f63fa592b98f22b13b2ad3fb416d136878369eb41
3494db8776
 node.2=7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2
922aa0ef50
 node.3=fd6e0bfe509078e273c0b3e23639374f0552b512c2bea1b2d3743012b7fed8a9dec7b47c57090fa6dcc5341922c32b89611eb9d967dba5f5d07be7
4a5aed2b4a

State mode configuration

state is used to store blockchain status information. It locates in the genesis file [state]:

	type: state type, currently supports storage state and MPT state, defaults to Storage state. storage state storing the transaction execution result in the system table, which is more efficient. MPT state storing the transaction execution result in the MPT tree, which is inefficient but contains complete historical information.

Important

The storage state is recommended.

[state]
 type=storage

Gas configuration

FISCO BCOS is compatible with Ethereum virtual machine (EVM). In order to prevent DOS from attacking EVM, EVM introduces the concept of gas when executing transactions, which is used to measure the computing and storage resources consumed during the execution of smart contracts. The measure includes the maximum gas limit of transaction and block. If the gas consumed by the transaction or block execution exceeds the gas limit, the transaction or block is discarded.

FISCO BCOS is alliance chain that simplifies gas design. It retains only maximum gas limit of transaction, and maximum gas of block is constrained together by consensus configuration max_trans_num and transaction maximum gas limit.

FISCO BCOS configures maximum gas limit of the transaction through genesis [tx].gas_limit. The default value is 300000000. After chain is initialized, the gas limit can be dynamically adjusted through the console command.

[tx]
 gas_limit=300000000

EVM configuration

FISCO BCOS v2.4.0 introduces the Free Storage Gas measurement mode to increase the proportion of CPU and memory in Gas consumption. For details, please refer to [here] (../design/virtual_machine/gas.html#evm-gas) The opening and closing of Free Storage Gas mode is controlled by the evm.enable_free_storage configuration item in the genesis file.

Note

	evm.enable_free_storage is supported in v2.4.0. This feature is not supported when supported_version is less than v2.4.0, or the old chain directly replaces binary upgrade

	When the chain is initialized, evm.enable_free_storage is written to the genesis block; after the chain is initialized, the node reads the evm.enable_free_storage configuration item from the genesis block, manually modifying the genesis configuration item will not take effect

	evm.enable_free_storage is set to false by default

	evm.enable_free_storage is set to true: enable Free Storage Gas mode

	evm.enable_free_storage is set to false: turn off Free Storage Gas mode

The configuration example is as follows:

[evm]
 enable_free_storage=false

Ledger variable configuration instruction

Variable configuration of the ledger is located in the file of the .ini suffix in the node conf directory.

For example: group1 variable configuration is generally named group.1.ini. Variable configuration mainly includes transaction pool size, PBFT consensus message forwarding TTL, PBFT consensus packing time setting, PBFT transaction packaging dynamic adjustment setting, parallel transaction settings, etc..

Configure storage

Storage currently supports three modes: RocksDB, MySQL, and Scalable. Users can choose the DB to use according to their needs. RocksDB has the highest performance. MySQL supports users to use MySQL database for viewing data. Since the RC3 version, we have used RocksDB instead of LevelDB for better performance, but still supports LevelDB.

Note

	Starting from v2.3.0, in order to facilitate chain maintenance, it is recommended to use MySQL storage mode instead of External storage mode

Public configuration item

Important

If you want to use MySQL, please set type to MySQL.

	type: The stored DB type, which supports RocksDB, MySQL and External. When the DB type is RocksDB, all the data of blockchain system is stored in the RocksDB local database; when the type is MySQL, the node accesses MySQL database according to the configuration. All data of blockchain system is stored in MySQL database. For accessing MySQL database, to configure the amdb-proxy. Please refer to here for the amdb-proxy configuration.

	max_capacity: configures the space size of the node that is allowed to use for memory caching.

	max_forward_block: configures the space size of the node that allowed to use for memory block. When the blocks exceeds this value, the node stops the consensus and waits for the blocks to be written to database.

	binary_log: default is false. when set to true, enable binary log, and then disable the wal of RocksDB.

	cached_storage: controls whether to use the cache. The default is true.

Database related configuration item

	topic: When the type is External, you need to configure this field to indicate the amdb-proxy topic that blockchain system is interested in. For details, please refer to here.

	max_retry: When the type is External, you need to configure this field to indicate the number of retries when writing fails. For details, please refer to here.

	scroll_threshold_multiple： when the type is Scalable, this configuration item is used to configure the handover threshold of the block database. The default value is 2, so Block data is stored in different RocksDB instances every 2000 blocks.

	db_ip: When the type is MySQL, you need to configure this field to indicate the IP address of MySQL.

	db_port: When the type is MySQL, you need to configure this field to indicate the port number of MySQL.

	db_username: When the type is MySQL, you need to configure this field to indicate the MySQL username.

	db_passwd: When the type is MySQL, you need to configure this field to indicate the password corresponding to the MySQL user.

	db_name: When the type is MySQL, you need to configure this field to indicate the database name used in MySQL.

	init_connections: When the type is MySQL, this field can be optionally configured to indicate the initial number of connections established with MySQL. The default value is 15, and it is fine to use it.

	max_connections: When the type is MySQL, this field can be optionally configured to indicate the maximum number of connections established with MySQL. The default value is 20, and it is fine to use it.

The following is an example of the configuration of [storage]:

[storage]
 ; storage db type, RocksDB / MySQL / external, RocksDB is recommended
 type=RocksDB
 max_capacity=256
 max_forward_block=10
 ; only for external
 max_retry=100
 topic=DB
 ; only for MySQL
 db_ip=127.0.0.1
 db_port=3306
 db_username=
 db_passwd=
 db_name=

Transaction pool configuration

FISCO BCOS opens the transaction pool capacity configuration to users. Users can dynamically adjust the transaction pool according to their business size requirements, stability requirements, and node hardware configuration.

Transaction pool capacity limit

In order to prevent excessive accumulating transactions occupy too much memory, FISCO BCOS provides two configuration items [tx_pool].limit and[tx_pool].memory_limit to limit the transaction pool capacity:

	[tx_pool].limit: limit the maximum number of transactions that can be accommodated in the transaction pool. The default is 150000, after the limit is exceeded, transactions sent by the client to the node will be rejected

	[tx_pool].memory_limit: The memory size limit of transactions in the transaction pool, the default is 512MB, after this limit is exceeded, the transaction sent by the client to the node will be rejected

The transaction pool capacity is configured as follows:

[tx_pool]
 limit=150000
 ; transaction pool memory size limit, MB
 memory_limit=512

Transaction pool push thread number configuration

In order to improve the performance of the blockchain system, FISCO BCOS uses the asynchronous push logic of transaction receipts. When the transaction is chained, the push thread in the transaction pool will asynchronously push the receipt of the transaction on the chain to the client. More system resources, and in order to prevent too few push threads from affecting the timeliness of transaction push, FISCO BCOS provides [tx_pool].notify_worker_num configuration item to configure the number of asynchronous push threads:

	[tx_pool].notify_worker_num: Number of asynchronous push threads, the default is 2, it is recommended that the value does not exceed 8

The number of push threads in the transaction pool is configured as follows:

[tx_pool]
 ; number of threads responsible for transaction notification,
 ; default is 2, not recommended for more than 8
 notify_worker_num=2

Transaction Expiration Configuration

In order to prevent the txs from pending in the transaction pool for too long when the system is abnormal, FISCO BCOS 2.9.0 introduces the transaction expiration time configuration txs_expiration_time. When the txs pending in the transaction pool exceeds txs_expiration_time, the transaction pool will actively clear the transaction.

	[tx_pool].txs_expiration_time: Transaction expiration time, the default is 10 minutes, the value is required to be not less than the consensus_timeout.

An example of txs_expiration_time configuration is as follows：

 ; transaction expiration time, in seconds, default is 10 minute
 txs_expiration_time=600

PBFT consensus configurations

In order to improve the performance, availability, and network efficiency of the PBFT algorithm, FISCO BCOS has made a series of optimizations for block packaging algorithms and networks, including PBFT block packaging dynamic adjustment strategies, PBFT message forwarding optimization, and PBFT Prepare packet structure optimization.

Note

Due to protocol and algorithm consistency requirements, it is recommended to ensure that the PBFT consensus configuration of all nodes is consistent.

PBFT consensus message broadcast configuration

In order to ensure the maximum network fault tolerance of the consensus process, each consensus node broadcasts the message to other nodes after receiving a valid consensus message. In smooth network environment, the consensus message forwarding mechanism will waste additional network bandwidth, so the ttl is introduced in the group variable configuration item to control the maximum number of message forwarding. The maximum number of message forwarding is ttl-1, and the configuration item is valid only for PBFT.

Setting consensus message to be forwarded at most once configuration example is as follows:

; the ttl for broadcasting pbft message
[consensus]
ttl=2

PBFT consensus packing time configuration

The PBFT module packing too fast causes only 1 to 2 transactions to be pack in some blocks. For avoiding wasting storage space, FISCO BCOS v2.0.0-rc2 introduces min_block_generation_time configuration item in the group variable configuration group.group_id.ini’s [consensus] to manager the minimum time for PBFT consensus packing. That is, when the consensus node packing time exceeds min_block_generation_time and the number of packaged transactions is greater than 0, the consensus process will start and handle the new block generated by the package.

Important

	min_block_generation_time is 500ms by default

	The longest packing time of consensus node is 1000ms. If the time is exceeded 1000ms and the number of transactions packed in the new block is still 0, the consensus module will enter the logic of empty block generation, and the empty block will not be written to disk;

	min_block_generation_time cannot exceed the time of empty block generation which is 1000ms. If the set value exceeds 1000ms, the system defaults min_block_generation_time to be 500ms.

[consensus]
;min block generation time(ms), the max block generation time is 1000 ms
min_block_generation_time=500

PBFT transaction package dynamic adjustment

For the impact causing by CPU loading and network latency on system processing power, PBFT provides an algorithm that dynamically adjusts the maximum number of transactions that can be packed in a block. The algorithm dynamically can adjust the maximum number of transactions according to the state of historical transaction processing. The algorithm is turned on by default, and it can be turned off by changing the [consensus].enable_dynamic_block_size configuration item of the variable configuration group.group_id.ini to false. At this time, the maximum number of transactions in the block is the [consensus].max_trans_num of group.group_id.genesis.

The configuration of closing the dynamic adjustment algorithm for the block package transaction number is as follows:

[consensus]
 enable_dynamic_block_size=false

PBFT message forwarding configuration

FISCO BCOS v2.2.0 optimizes the PBFT message forwarding mechanism to ensure that PBFT message packets can reach each consensus node as much as possible in the network disconnection scenario, while reducing redundant PBFT message packets in the network. For PBFT message forwarding optimization strategies. You can use the [consensus].enable_ttl_optimization configuration item of group.group_id.ini to enable or disable the PBFT message forwarding optimization strategy.

	[consensus].enable_ttl_optimization is configured as true: Enable PBFT message forwarding optimization strategy

	[consensus].enable_ttl_optimization is configured as false: Disable PBFT message forwarding optimization strategy

	When supported_version is not less than v2.2.0, the PBFT message forwarding strategy is enabled by default; whensupported_version is less than v2.2.0, the PBFT message forwarding optimization strategy is disabled by default

Disable PBFT message forwarding optimization strategy configuration as follows：

[consensus]
 enable_ttl_optimization=false

PBFT Prepare package structure optimization

Considering that in the PBFT algorithm, transactions in blocks in the Prepare packet broadcast by the Leader have a high probability of hitting in the transaction pools of other consensus nodes. In order to save network bandwidth, FISCO BCOS v2.2.0 has optimized the Prepare packet structure: The block only contains a list of transaction hashes. After other consensus nodes receive the Prepare packet, they will first obtain the hit transaction from the local transaction pool and request the missing transaction from Leader. This policy can be enabled or disabled through the [consensus].enable_prepare_with_txsHash configuration item of group.group_id.ini.

	[consensus].enable_prepare_with_txsHash is configured as true：Enable the structure optimization of the Prepare package. The blocks in the Prepare message package only contain the transaction hash list.

	[consensus].enable_prepare_with_txsHash is configured as false：Disable the structure optimization of the Prepare packet, the block in the Prepare message packet contains the full amount of transactions

	When supported_version is not less than v2.2.0,[consensus].enable_prepare_with_txsHash defaults to true; when supported_version is less than v2.2.0, [consensus].enable_prepare_with_txsHash defaults to false

Note

Due to protocol consistency requirements, all nodes must ensure enable_prepare_with_txsHash configuration is consistent

Disable the PBFT Prepare package structure optimization configuration as follows:

[consensus]
 enable_prepare_with_txsHash=false

rPBFT consensus configurations

FISCO BCOS v2.3.0 introduces the rPBFT consensus algorithm. In order to ensure the load balance of the network traffic of the rPBFT algorithm, the tree broadcast policy of the Prepare packet is introduced, Corresponding fault tolerance scheme.

	[consensus].broadcast_prepare_by_tree: Enable/disable switch for Prepare tree broadcast policy. Set to true to enable the tree broadcast policy for Prepare packets. Set tofalse to disable the tree broadcast policy for Prepare packets. Default is true.

The following is the fault-tolerant configuration after the Prepare packet tree broadcast policy is enabled:

	[consensus].prepare_status_broadcast_percent: The percentage of the randomly selected nodes that receive the prepare status, The value ranges from 25 to 100, and the default is 33.

	[consensus].max_request_prepare_waitTime：When the node’s Prepare cache is missing, the longest delay for waiting for the parent node to send a Prepare packet is 100ms by default. After this delay, the node will request from other nodes that own the Prepare packet.

The following is the configuration of load balancing after enabling Prepare package structure optimization in rPBFT mode:

	[consensus].max_request_missedTxs_waitTime: After the transaction in the node’s Prepare packet is missing, the longest delay for waiting for the parent node or other non-leader node to synchronize the Prepare packet status is 100ms by default, if the packet status is synchronized to the parent node or non-leader node within the waiting delay window, a random node will be selected to request the missing transaction, otherwise, directly request the missing transaction from the leader.

rPBFT default configuration is as follows:

; Tree broadcast policy for Prepare packets is enabled by default
broadcast_prepare_by_tree=true
; Only effective when the prepare package tree broadcast is enabled
; Each node randomly selects 33% consensus nodes to synchronize the prepare packet status
prepare_status_broadcast_percent=33
; Under the prepare package tree broadcast strategy,
; the node missing the prepare package takes more than 100ms and
; does not wait for the prepare package forwarded by the parent node
; to request the missing prepare package from other nodes.
max_request_prepare_waitTime=100
; The maximum delay for a node to wait for a parent node
;or other non-leader node to synchronize a prepare packet is 100ms
max_request_missedTxs_waitTime=100

Sync configurations

The synchronization module is a “big network consumer”, including block synchronization and transaction synchronization. FISCO BCOS optimizes the efficiency of the consensus module network using the principle of load balancing.

Note

Due to protocol consistency requirements, it is recommended to ensure that the PBFT consensus configuration of all nodes is consistent.

Block synchronization optimization configuration

In order to enhance the scalability of the blockchain system under the condition of limited network bandwidth, FISCO BCOS v2.2.0 has optimized block synchronization. For detailed optimization strategies. You can use the [sync].sync_block_by_tree of group.group_id.ini to enable or disable the block synchronization optimization strategy.

	[sync].sync_block_by_tree is configured as true:Enable block synchronization optimization strategy

	[sync].sync_block_by_tree is configured as false: Turn off block synchronization optimization strategy

	When supported_version is not less than v2.2.0, [sync].sync_block_by_tree defaults to true; when supported_version is less than v2.2.0,[sync].sync_block_by_tree defaults to false

In addition, in order to ensure the robustness of tree topology block synchronization, FISCO BCOS v2.2.0 also introduced the gossip protocol to periodically synchronize the block status. The related configuration items of the gossip protocol are located in [sync] of group.group_id.ini The details are as follows:

	gossip_interval_ms：gossip protocol synchronization block status period, default is 1000ms

	gossip_peers_number：Each time a node synchronizes the block status, the number of randomly selected neighbor nodes, the default is 3

Note

	gossip protocol configuration item, only effective when block tree broadcast optimization is enabled

	Must ensure that all nodes sync_block_by_tree configuration is consistent

The optimized configuration of enabling block tree broadcasting is as follows：

[sync]
 ; Block tree synchronization strategy is enabled by default
 sync_block_by_tree=true
 ; Every node synchronizes the latest block status every 1000ms
 gossip_interval_ms=1000
 ; Each node randomly selects 3 neighbor nodes at a time to synchronize the latest block status
 gossip_peers_number=3

Optimal configuration of transaction tree broadcast

In order to reduce the peak outbound bandwidth of SDK directly connected nodes and improve the scalability of the blockchain system, FISCO BCOS v2.2.0 introduced a transaction tree broadcast optimization strategy. You can use the [sync].send_txs_by_tree of group.group_id.ini to enable or disable the transaction tree broadcast strategy. The detailed configuration is as follows:

	[sync].sync_block_by_tree：Set to true to enable transaction tree broadcast strategy; set tofalse to disable transaction tree broadcast strategy

The configuration of the disabled transaction tree broadcast policy is as follows：

[sync]
 ; Transaction tree broadcast strategy is enabled by default
 send_txs_by_tree=false

Note

	Due to protocol consistency requirements, all nodes must ensure that the tree broadcast switch send_txs_by_tree is configured consistently

	When supported_version is not less than v2.2.0, the transaction tree broadcast optimization strategy is turned on by default; when supported_version is less than v2.2.0, the transaction tree broadcast strategy is turned off by default

Optimized transaction forwarding configuration

In order to reduce the traffic overhead caused by transaction forwarding, FISCO BCOS v2.2.0 introduced a state packet-based transaction forwarding strategy. You can configure the maximum number of forwarding nodes for the transaction status through [sync].txs_max_gossip_peers_num of group.group_id.ini.

Note

To ensure that transactions reach each node and minimize the traffic overhead introduced by transaction status forwarding, it is not recommended to set txs_max_gossip_peers_num too small or too large, just use the default configuration

The maximum number of nodes for transaction status forwarding is configured as follows:

[sync]
 ; Each node randomly selects up to 5 neighbor nodes to synchronize the latest transaction status.
 txs_max_gossip_peers_num=5

Parallel transaction configuration

FISCO BCOS supports execution of transactions in parallel. Turning on the transaction parallel execution switch to enable for improving throughput. Execution of the transaction in parallel is only effective in the storage state mode.

Note

	In order to simplify system configuration, v2.3.0 removes the enable_parallel configuration item, which only takes effect when supported_version < v2.3.0 , in v2.3.0
	
	storageState mode: enable parallel transaction

	mptState mode: disable parallel transactions

[tx_execute]
 enable_parallel=true

Optional configuration: group flow control

In order to prevent the mutual influence of resources between multiple groups, FISCO BCOS v2.5.0 introduces a flow control function, which supports group-level SDK request rate limit and flow limit, Configure [flow_control] located in group. {Group_id}.ini, disabled by default，For detailed design of flow control, please refer to here.

SDK to group request rate limit configuration

The SDK request rate limit within the group is located in the configuration item [flow_control] .limit_req, Used to limit the maximum number of SDK requests to the group per second, when the request to the node per second exceeds the value of the configuration item, the request will be rejected, SDK to group request rate limit is disabled by default, to enable this function, you need to remove the ; in front of the limit_req configuration item, An example of enable the SDK request rate limit and configuring the group to accept 1000 SDK requests per second is as follows:

[flow_control]
 ; restrict QPS of the group
 limit_req=1000

Traffic limit configuration between groups

In order to prevent block sync from occupying too much network traffic and affecting the message packet transmission of the consensus module, FISCO BCOS v2.5.0 introduces group-level traffic limit, which configures the upper limit of the average bandwidth of the group, but does not limit the block consensus and transaction sync, when the average bandwidth of the group exceeds the configured value, the block transmission will be suspended.

	[flow_control].outgoing_bandwidth_limit: Group output bandwidth limit, the unit is Mbit/s, when the group output bandwidth exceeds this value, it will suspend sending blocks, but will not limit the block consensus and transaction broadcast traffic, this configuration item is disabled by default, to enable the traffic limit function, remove the ; before the outgoing_bandwidth_limit configuration item.

The configuration example of enable the group outbound traffic limit and setting it to 2MBit/s is as follows:

[flow_control]
 ; Mb, can be a decimal
 ; when the outgoing bandwidth exceeds the limit, the block synchronization operation will not proceed
 outgoing_bandwidth_limit=2

Optional configuration: SDK allowlist configuration

In order to achieve access control from SDK to group, FISCO BCOS v2.6.0 introduced a group-level SDK allowlist access control mechanism. The configuration of [sdk_allowlist] located in group.{group_id}.ini is disabled by default. Please refer to here for the group-level SDK allowlist mechanism.

Important

FISCO BCOS v2.6.0 disables the allowlist access control from SDK to group by default, that is, the SDK can communicate with all groups by default. To enable the allowlist-based access control function between SDK and group, you need to change the ;public_key.0 and other configuration items before the semicolon removed

	public_key.0、public_key.1、…、public_key.i: Configure the SDK public key public key list allowed to communicate with the group.

SDK allowlist configuration example is as follows：

[sdk_allowlist]
; When sdk_allowlist is empty, all SDKs can connect to this node
; when sdk_allowlist is not empty, only the SDK in the allowlist can connect to this node
; public_key.0 should be nodeid, nodeid's length is 128
public_key.0=b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f3

Dynamically configure system parameters

FISCO BCOS system currently includes the following system parameters (other system parameters will be extended in the future):

	System parameters
	Defaults
	meaning

	tx_count_limit
	1000
	Maximum number of transactions that can be packed in a block

	tx_gas_limit
	300000000
	Maximum gas limit for one transaction

	rpbft_epoch_sealer_num
	Total number of chain consensus nodes
	rPBFT system configuration, the number of nodes participating in consensus is selected in a consensus period, and the number of nodes participating in consensus is dynamically switched in each consensus period of rPBFT

	rpbft_epoch_block_num
	1000
	rPBFT system configuration, the number of blocks produced in a consensus period

	consensus_timeout
	3
	During the PBFT consensus process, the block execution timeout time is at least 3s, When supported_version>=v2.6.0, the configuration item takes effect

Console provides setSystemConfigByKey command to modify these system parameters.
getSystemConfigByKey command can view the current value of the system parameter:

Important

It is not recommended to modify tx_count_limit and tx_gas_limit arbitrarily. These parameters can be modified as follows:

	Hardware performance such as machine network or CPU is limited: to reduce tx_count_limit for reducing business pressure;

	gas is insufficient when executing transactions for comlicated business logic: increase tx_gas_limit.

rpbft_epoch_sealer_num and rpbft_epoch_block_num are only valid for the rPBFT consensus algorithm. In order to ensure the performance of the consensus, it is not recommended to frequently switch the consensus list dynamically, that is, it is not recommended that the rpbft_epoch_block_num configuration value is too small

To set the maximum number of transactions of a packaged block to 500

> setSystemConfigByKey tx_count_limit 500
inquiry tx_count_limit
> getSystemConfigByKey tx_count_limit
[500]

To set transaction gas limit as 400000000
> setSystemConfigByKey tx_gas_limit 400000000
> getSystemConfigByKey tx_gas_limit
[400000000]

Under the rPBFT consensus algorithm, set a consensus period to select the number of nodes participating in the consensus to 4
[group:1]> setSystemConfigByKey rpbft_epoch_sealer_num 4
Note: rpbft_epoch_sealer_num only takes effect when rPBFT is used
{
 "code":0,
 "msg":"success"
}
query rpbft_epoch_sealer_num
[group:1]> getSystemConfigByKey rpbft_epoch_sealer_num
Note: rpbft_epoch_sealer_num only takes effect when rPBFT is used
4

Under the rPBFT consensus algorithm, set a consensus period to produce 10,000 blocks
[group:1]> setSystemConfigByKey rpbft_epoch_block_num 10000
Note: rpbft_epoch_block_num only takes effect when rPBFT is used
{
 "code":0,
 "msg":"success"
}
query rpbft_epoch_block_num
[group:1]> getSystemConfigByKey rpbft_epoch_block_num
Note: rpbft_epoch_block_num only takes effect when rPBFT is used
10000

get consensus_timeout
[group:1]> getSystemConfigByKey consensus_timeout
3

set consensus_timeout to 5s
[group:1]> setSystemConfigByKey consensus_timeout 5
{
 "code":0,
 "msg":"success"
}

 OSCCA-approved cryptography

OSCCA-approved cryptography

For fully supporting the OSCCA-approved cryptography algorithm, FISCO integrates the national encryption, decryption, signature, verification, hash algorithm and SSL communication protocol in the FISCO BCOS platform based on the OSCCA-approved cryptography standard. The design documents can be found in the FISCO BCOS Design Manual. OSCCA-approved cryptography Version.

Initial deployment of FISCO BCOS OSCCA-approved cryptography version

This section uses the build_chain script to build a 4-nodes FISCO BCOS chain locally, and uses Ubuntu 16.04 system as an example to operate. This section uses pre-compiled static fisco-bcos binaries for testing on CentOS 7 and Ubuntu 16.04.

rely on the installation of Ubuntu16
$ sudo apt install -y openssl curl
prepare environment
$ cd ~ && mkdir -p fisco && cd fisco
download build_chain.sh script
$ curl -#LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.7.2/build_chain.sh

If you have network issue for exec command above, please try:
$ curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/tools/build_chain.sh

$ chmod u+x build_chain.sh

	build a 4-nodes FISCO BCOS chain

Generate a 4-nodes FISCO chain. All nodes belong to group1. The following instructions are executed in the fisco directory.
-p specifies the starting ports which are p2p_port, channel_port, jsonrpc_port
According to the following instructions, it needs to ensure that the 30300~30303, 20200~20203, 8545~8548 ports of the machine are not occupied.
-g It will generate a chain of OSCCA-approved cryptography.
$./build_chain.sh -l 127.0.0.1:4 -p 30300,20200,8545 -g

For the build_chain.sh script option, please [refer to here] (../manual/build_chain.md). The command that execute normally will output All completed. (If there is no output, refer to nodes/build.log for checking).

[INFO] Downloading tassl binary ...
Generating CA key...
Generating Guomi CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
[INFO] FISCO-BCOS Path : bin/fisco-bcos
[INFO] Start Port : 30300 20200 8545
[INFO] Server IP : 127.0.0.1:4
[INFO] State Type : storage
[INFO] RPC listen IP : 127.0.0.1
[INFO] Output Dir : /mnt/c/Users/asherli/Desktop/key-manager/build/nodes
[INFO] CA Key Path : /mnt/c/Users/asherli/Desktop/key-manager/build/nodes/gmcert/ca.key
[INFO] Guomi mode : yes
==
[INFO] All completed. Files in /mnt/c/Users/asherli/Desktop/key-manager/build/nodes

After the deployment of the OSCCA-approved cryptography alliance chain is completed, the rest of operations are same as [installation] (../installation.md).

OSCCA-approved cryptography configuration information

The nodes of FISCO BCOS OSCCA-approved cryptography version message through using SSL secure channel. The main configuration items of the SSL certificate are concentrated in the following configuration items:

[network_security]

data_path：path where the certificate file is located
key：the path of the node private key relative to the data_path
cert: the path of the certificate gmnode.crt relative to data_path
ca_cert: the path of certificate gmca

;certificate configuration
[network_security]
 ;directory the certificates located in
 data_path=conf/
 ;the node private key file
 key=gmnode.key
 ;the node certificate file
 cert=gmnode.crt
 ;the ca certificate file
 ca_cert=gmca.crt

After Fisco-BCOS version 2.5.0, nodes and SDKS can communicate using either SSL or national secret SSL connections. The configuration is as follows:

[chain]
 ; use SM crypto or not, should nerver be changed
 sm_crypto=true
 ; use SM SSL connection with SDK
 sm_crypto_channel=true

using OSCCA-approved cryptography SDK

For details, refer to [SDK Documentation] (../sdk/sdk.html#id8).

OSCCA-approved cryptography console configuration

using OSCCA-approved cryptography console

The function of OSCCA-approved cryptography console is used in the same way as the standard console. Console version 2.6 and above does not require additional configuration. For the configuration method of console version 1.x, please refer to Console Operation Manual.

OSCCA-approved cryptography configuration

OSCCA-approved cryptography Key Manager

Other steps are same as the standard Key Manager. Please refer to key-manager repository [https://github.com/FISCO-BCOS/key-manager].

OSCCA-approved cryptography node configuration

FISCO BCOS OSCCA-approved cryptography version adopts dual certificate mode, so two sets of certificates are needed for disk encryption. They are the conf/gmnode.key and conf/origin_cert/node.key. Other operations of disk encryption are the same as [Standard Edition Loading Encryption Operation] (./storage_security.md).

cd key-manager/scripts
#encrypt conf/gmnode.key parameter: ip port Node private key file cipherDataKey
bash encrypt_node_key.sh 127.0.0.1 8150 nodes/127.0.0.1/node0/conf/gmnode.key ed157f4588b86d61a2e1745efe71e6ea
#encrypt conf/origin_cert/node.key parameter: ip port Node private key file cipherDataKey
bash encrypt_node_key.sh 127.0.0.1 8150 nodes/127.0.0.1/node0/conf/origin_cert/node.key ed157f4588b86d61a2e1745efe71e6ea

 Deploy Multi-Group Blockchain System

Deploy Multi-Group Blockchain System

This chapter takes the star networking and parallel multi-group networking as an example to guide you to the following.

	Learn to deploy multi-group blockchain with build_chain.sh shell script;

	Understand the organization of the multi-group blockchain created by build_chain.sh

	Learn how to start the blockchain node and get the consensus status of each group through the log;

	Learn how to send transactions to the given group and get the block generation status through the log;

	Understand node management of the blockchain system, including how to add/remove the given consensus node;

	Learn how to create a new group.

Important

	build_chain.sh is suitable for developers and users to use quickly

	Build an enterprise-level business chain, recommend to use generator

Introduction of star networking topology and parallel multi-group networking topology

As shown in the following figure, the star networking topology and the parallel multi-group networking topology are two widely used networking methods in blockchain applications.

	Star networking topology: The nodes of the central agency belong to multiple groups, and runs multiple institutional applications. Nodes of the other agencies belongs to different groups and runs their respective applications;

	Parallel multi-group networking topology: Each node in the blockchain belongs to multiple groups and can be used for multi-service expansion or multi-node expansion of the same service.

[image: ../../_images/group.png]

The following is a detailed description of how to deploy a eight-node star networking blockchain system and a four-node parallel multi-group networking blockchain.

Installation dependency

Before deploying the FISCO BCOS blockchain, you need to install software such as openssl, curl, etc. The specific commands are as follows:

CentOS
$ sudo yum install -y openssl curl

Ubuntu
$ sudo apt install -y openssl curl

Mac OS
$ brew install openssl curl

Star networking topology

In this chapter, we deploy a star networking blockchain system with four agencies, three groups and eight nodes in the local machine.

Here is the detailed configuration of star networking blockchain:

	agencyA: belongs to group1、group2、group3, including 2 nodes with the same IP address 127.0.0.1;

	agencyB: belongs to group1, including 2 nodes with the same IP address 127.0.0.1;

	agencyC: belongs to group2, including 2 nodes with the same IP address 127.0.0.1;

	agencyD: belongs to group3, including 2 nodes with the same IP address 127.0.0.1.

In a star network topology, the core node (in this case, the agencyA node) belongs to all groups and has a high load. It is recommended to deploy it separately on a machine with better performance.

Important

	In the actual application scenario, it is not recommended to deploy multiple nodes on the same machine. It is recommended to select the number of deployed nodes in one machine according to the machine loading. Please refer to the hardware configuration

	In a star network topology, the core node (in this case, the agencyA node) belongs to all groups and has a high load. It is recommended to deploy it separately on a machine with better performance.

	When operating in different machines, please copy the generated IP folder to the corresponding machine to start. The chain building operation only needs to be performed once!

Generate configuration for star networking blockchain

build_chain.sh supports to generate configurations for blockchain with any topology, you can use this script to build configuration for the star networking blockchain.

Prepare for dependency

	Create an operation directory

mkdir -p ~/fisco && cd ~/fisco

	Download the build_chain.sh script

curl -#LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.7.2/build_chain.sh && chmod u+x build_chain.sh

Note

	If the script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/tools/gen_node_cert.sh

Generate configuration for star networking blockchain system

Generate ip_list(configuration)
$ cat > ipconf << EOF
127.0.0.1:2 agencyA 1,2,3
127.0.0.1:2 agencyB 1
127.0.0.1:2 agencyC 2
127.0.0.1:2 agencyD 3
EOF

Check the content of ip_list
$ cat ipconf
Meaning of the space-separated parameters:
ip:num: IP of the physical machine and the number of nodes
agency_name: agency name
group_list: the list of groups the nodes belong to, groups are separated by comma
127.0.0.1:2 agencyA 1,2,3
127.0.0.1:2 agencyB 1
127.0.0.1:2 agencyC 2
127.0.0.1:2 agencyD 3

Create node configuration folder for star networking blockchain using build_chain script

Please refer to the build_chain for more parameter descriptions of build_chain.sh.

Generate a blockchain of star networking and make sure ports 30300~30301, 20200~20201, 8545~8546 of the local machine are not occupied
$ bash build_chain.sh -f ipconf -p 30300,20200,8545
Generating CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:2 Agency:agencyA Groups:1,2,3
Processing IP:127.0.0.1 Total:2 Agency:agencyB Groups:1
Processing IP:127.0.0.1 Total:2 Agency:agencyC Groups:2
Processing IP:127.0.0.1 Total:2 Agency:agencyD Groups:3
==
......Here to omit other outputs......
==
[INFO] FISCO-BCOS Path : ./bin/fisco-bcos
[INFO] IP List File : ipconf
[INFO] Start Port : 30300 20200 8545
[INFO] Server IP : 127.0.0.1:2 127.0.0.1:2 127.0.0.1:2 127.0.0.1:2
[INFO] State Type : storage
[INFO] RPC listen IP : 127.0.0.1
[INFO] Output Dir : /home/ubuntu16/fisco/nodes
[INFO] CA Key Path : /home/ubuntu16/fisco/nodes/cert/ca.key
==
[INFO] All completed. Files in /home/ubuntu16/fisco/nodes

The generated node file is as follows:
nodes
|-- 127.0.0.1
| |-- fisco-bcos
| |-- node0
| | |-- conf # node configuration folder
| | | |-- ca.crt
| | | |-- group.1.genesis
| | | |-- group.1.ini
| | | |-- group.2.genesis
| | | |-- group.2.ini
| | | |-- group.3.genesis
| | | |-- group.3.ini
| | | |-- node.crt
| | | |-- node.key
| | | `-- node.nodeid # stores the information of Node ID
| | |-- config.ini # node configuration file
| | |-- start.sh # shell script to start the node
| | `-- stop.sh # shell script to stop the node
| |-- node1
| | |-- conf
......omit other outputs here......

Note

If the generated nodes belong to different physical machines, the blockchain nodes need to be copied to the corresponding physical machine.

Start node

FISCO-BCOS provides the start_all.sh and stop_all.sh scripts to start and stop the node.

Switch to the node directory
$ cd ~/fisco/nodes/127.0.0.1

Start the node
$ bash start_all.sh

Check node process
$ ps aux | grep fisco-bcos
ubuntu16 301 0.8 0.0 986644 7452 pts/0 Sl 15:21 0:00 /home/ubuntu16/fisco/nodes/127.0.0.1/node5/../fisco-bcos -c config.ini
ubuntu16 306 0.9 0.0 986644 6928 pts/0 Sl 15:21 0:00 /home/ubuntu16/fisco/nodes/127.0.0.1/node6/../fisco-bcos -c config.ini
ubuntu16 311 0.9 0.0 986644 7184 pts/0 Sl 15:21 0:00 /home/ubuntu16/fisco/nodes/127.0.0.1/node7/../fisco-bcos -c config.ini
ubuntu16 131048 2.1 0.0 1429036 7452 pts/0 Sl 15:21 0:00 /home/ubuntu16/fisco/nodes/127.0.0.1/node0/../fisco-bcos -c config.ini
ubuntu16 131053 2.1 0.0 1429032 7180 pts/0 Sl 15:21 0:00 /home/ubuntu16/fisco/nodes/127.0.0.1/node1/../fisco-bcos -c config.ini
ubuntu16 131058 0.8 0.0 986644 7928 pts/0 Sl 15:21 0:00 /home/ubuntu16/fisco/nodes/127.0.0.1/node2/../fisco-bcos -c config.ini
ubuntu16 131063 0.8 0.0 986644 7452 pts/0 Sl 15:21 0:00 /home/ubuntu16/fisco/nodes/127.0.0.1/node3/../fisco-bcos -c config.ini
ubuntu16 131068 0.8 0.0 986644 7672 pts/0 Sl 15:21 0:00 /home/ubuntu16/fisco/nodes/127.0.0.1/node4/../fisco-bcos -c config.ini

Check consensus status of groups

When no transaction is sent, the node with normal consensus status will output +++ log. In this example, node0 and node1 belong to group1, group2 and group3; node2 and node3 belong to group1; node4 and node5 belong to group2; node6 and node7 belong to group3. Check the status of node by tail -f node*/log/* | grep "++".

Important

	Node with normal consensus status prints +++ log, fields of +++ log are defined as:
	
	g:: group ID;

	blkNum: the newest block number generated by the Leader node;

	tx: the number of transactions included in the new block;

	nodeIdx: the index of this node;

	hash: hash of the newest block generated by consensus nodes.

Check if node0 group1 is normal(Ctrl+c returns to the command line)
$ tail -f node0/log/* | grep "g:1.*++"
info|2019-02-11 15:33:09.914042| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=2,hash=72254a42....

Check if node0 group2 is normal
$ tail -f node0/log/* | grep "g:2.*++"
info|2019-02-11 15:33:31.021697| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=3,hash=ef59cf17...

... To check node1, node2 node for each group is normal or not, refer to the above operation method...

Check if node3 group1 is normal
$ tail -f node3/log/*| grep "g:1.*++"
info|2019-02-11 15:39:43.927167| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=3,hash=5e94bf63...

Check if node5 group2 is normal
$ tail -f node5/log/* | grep "g:2.*++"
info|2019-02-11 15:39:42.922510| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=2,hash=b80a724d...

Configuration console

The console connects to the FISCO BCOS node, it is used to query the blockchain status and deploy the calling contract, etc. Please refer to here for the console manual for version 2.6 and above, and here for the console manual for version 1.x.

Important

The console relies on Java 8 and above, and Ubuntu 16.04 system needs be installed with openjdk 8. Please install Oracle Java 8 or above for CentOS.

Switch back to ~/fisco folder
$ cd ~/fisco

Download console
$ curl -#LO https://github.com/FISCO-BCOS/console/releases/download/v2.9.2/download_console.sh

If you have network issue for exec command above, please try:
$ curl -#LO https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/download_console.sh

$ bash download_console.sh

Switch to console directory
$ cd console

Copy node certificate of group 2 to the configuration directory of console
$ cp ~/fisco/nodes/127.0.0.1/sdk/* conf/

Obtain channel_listen_port of node0
$ grep "channel_listen_port" ~/fisco/nodes/127.0.0.1/node*/config.ini
/home/ubuntu16/fisco/nodes/127.0.0.1/node0/config.ini: channel_listen_port=20200
/home/ubuntu16/fisco/nodes/127.0.0.1/node1/config.ini: channel_listen_port=20201
/home/ubuntu16/fisco/nodes/127.0.0.1/node2/config.ini: channel_listen_port=20202
/home/ubuntu16/fisco/nodes/127.0.0.1/node3/config.ini: channel_listen_port=20203
/home/ubuntu16/fisco/nodes/127.0.0.1/node4/config.ini: channel_listen_port=20204
/home/ubuntu16/fisco/nodes/127.0.0.1/node5/config.ini: channel_listen_port=20205
/home/ubuntu16/fisco/nodes/127.0.0.1/node6/config.ini: channel_listen_port=20206
/home/ubuntu16/fisco/nodes/127.0.0.1/node7/config.ini: channel_listen_port=20207

configure the console
$ cp ~/fisco/console/conf/config-example.toml ~/fisco/console/conf/config.toml

Important

When connecting node with the console, we should make sure that the connected nodes are in the group configured by the console

Start the console

$ bash start.sh
The following information output indicates that the console is successfully started. If the startup fails, check whether the certificate configuration and the channel listen port configuration are correct.
===
Welcome to FISCO BCOS console(2.6.1)!
Type 'help' or 'h' for help. Type 'quit' or 'q' to quit console.
 ________ ______ ______ ______ ______ _______ ______ ______ ______
| | \/ \ / \ / \ | \ / \ / \ / \
| $$$$$$$$\$$$$$| $$$$$$| $$$$$$| $$$$$$\ | $$$$$$$| $$$$$$| $$$$$$| $$$$$$\
| $$__ | $$ | $$___\$| $$ \$| $$ | $$ | $$__/ $| $$ \$| $$ | $| $$___\$$
| $$ \ | $$ \$$ \| $$ | $$ | $$ | $$ $| $$ | $$ | $$\$$ \
| $$$$$ | $$ _\$$$$$$| $$ __| $$ | $$ | $$$$$$$| $$ __| $$ | $$_\$$$$$$\
| $$ _| $$_| __| $| $$__/ | $$__/ $$ | $$__/ $| $$__/ | $$__/ $| __| $$
| $$ | $$ \\$$ $$\$$ $$\$$ $$ | $$ $$\$$ $$\$$ $$\$$ $$
 \$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$

===
[group:1]>

Send transactions to groups

In the above section, we learned how to configure the console, this section will introduce how to send transactions to groups through the console.

Important

In the group architecture, the ledgers are independent in each group. And sending transactions to one group only increases the block number of this group but not others

Send transactions through console

... Send HelloWorld transaction to group1...
$ [group:1]> deploy HelloWorld
transaction hash: 0xd0305411e36d2ca9c1a4df93e761c820f0a464367b8feb9e3fa40b0f68eb23fa
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Check the current block number of group1, if the block number is increased to 1, it indicates that the blockchain is normal. Otherwise, please check if group1 is abnormal.
$ [group:1]> getBlockNumber
1

... Send HelloWorld transaction to group2...
Switch to group2
$ [group:1]> switch 2
Switched to group 2.
Send transaction to group2, return a transaction hash indicates that the transaction is deployed successfully, otherwise, please check if the group2 works normally.
$ [group:2]> deploy HelloWorld
transaction hash: 0xd0305411e36d2ca9c1a4df93e761c820f0a464367b8feb9e3fa40b0f68eb23fa
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Check the current block number of group2, if the block number is increased to 1, it indicates that the blockchain is normal. Otherwise, please check if group1 is abnormal
$ [group:2]> getBlockNumber
1

... Send transaction to group3...
Switch to group3
$ [group:2]> switch 3
Switched to group 3.
Send transaction to group3, return a transaction hash indicates that the transaction is deployed successfully, otherwise, please check if the group2 works normally.
$ [group:3]> deploy HelloWorld
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Check the current block number of group3, if the block number is increased to 1, it indicates that the blockchain is normal. Otherwise, please check if group1 is abnormal
$ [group:3]> getBlockNumber
1

... Switch to group 4 that does not exist: the console prompts that group4 does not exist, and outputs the current group list ...
$ [group:3]> switch 4
Group 4 does not exist. The group list is [1, 2, 3].

Exit the console
$ [group:3]> exit

Check the log

After the block is generated, the node will output Report log, which contains fields with following definitions:

Switch the node directory
$ cd ~/fisco/nodes/127.0.0.1

Check the block generation status of group1: new block generated
$ cat node0/log/* |grep "g:1.*Report"
info|2019-02-11 16:08:45.077484| [g:1][p:264][CONSENSUS][PBFT]^^^^^^^^Report,num=1,sealerIdx=1,hash=9b5487a6...,next=2,tx=1,nodeIdx=2

Check the block generation status of group2: new block generated
$ cat node0/log/* |grep "g:2.*Report"
info|2019-02-11 16:11:55.354881| [g:2][p:520][CONSENSUS][PBFT]^^^^^^^^Report,num=1,sealerIdx=0,hash=434b6e07...,next=2,tx=1,nodeIdx=0

Check the block generation status of group3: new block generated
$ cat node0/log/* |grep "g:3.*Report"
info|2019-02-11 16:14:33.930978| [g:3][p:776][CONSENSUS][PBFT]^^^^^^^^Report,num=1,sealerIdx=1,hash=3a42fcd1...,next=2,tx=1,nodeIdx=2

Node joins the group

Through the console, FISCO BCOS can add the specified node to the specified group, or delete the node from the specified group. For details, please refer to the node admission management manual, for console configuration, please reference console operation manual.

Taking how to join node2 to group2 as an example, this chapter introduces how to add a new node to an existing group.

Copy group2 configuration to node2

Switch to node directory
$ cd ~/fisco/nodes/127.0.0.1

... Copy group2 configuration of node0 to node2 ...
$ cp node0/conf/group.2.* node2/conf

...Restart node2(make sure the node is in normal consensus after restart)...
$ cd node2 && bash stop.sh && bash start.sh

Get the ID of node2

Please remember the node ID of node2. Add node2 to group2 needs the node ID.
$ cat conf/node.nodeid
6dc585319e4cf7d73ede73819c6966ea4bed74aadbbcba1bbb777132f63d355965c3502bed7a04425d99cdcfb7694a1c133079e6d9b0ab080e3b874882b95ff4

Send commands to group2 through the console to add node2 into group2

...Go back to the console directory and launch the console (direct boot to group2)...
$ cd ~/fisco/console && bash start.sh 2

...Join node2 as a consensus node through the console...
1. Check current consensus node list
$ [group:2]> getSealerList
[
 9217e87c6b76184cf70a5a77930ad5886ea68aefbcce1909bdb799e45b520baa53d5bb9a5edddeab94751df179d54d41e6e5b83c338af0a19c0611200b830442,
 227c600c2e52d8ec37aa9f8de8db016ddc1c8a30bb77ec7608b99ee2233480d4c06337d2461e24c26617b6fd53acfa6124ca23a8aa98cb090a675f9b40a9b106,
 7a50b646fcd9ac7dd0b87299f79ccaa2a4b3af875bd0947221ba6dec1c1ba4add7f7f690c95cf3e796296cf4adc989f4c7ae7c8a37f4505229922fb6df13bb9e,
 8b2c4204982d2a2937261e648c20fe80d256dfb47bda27b420e76697897b0b0ebb42c140b4e8bf0f27dfee64c946039739467b073cf60d923a12c4f96d1c7da6
]
2. Add node2 to the consensus node
The parameter after addSealer is the node ID obtained in the previous step
$ [group:2]> addSealer 6dc585319e4cf7d73ede73819c6966ea4bed74aadbbcba1bbb777132f63d355965c3502bed7a04425d99cdcfb7694a1c133079e6d9b0ab080e3b874882b95ff4
{
 "code":0,
 "msg":"success"
}
3. Check current consensus node list
$ [group:2]> getSealerList
[
 9217e87c6b76184cf70a5a77930ad5886ea68aefbcce1909bdb799e45b520baa53d5bb9a5edddeab94751df179d54d41e6e5b83c338af0a19c0611200b830442,
 227c600c2e52d8ec37aa9f8de8db016ddc1c8a30bb77ec7608b99ee2233480d4c06337d2461e24c26617b6fd53acfa6124ca23a8aa98cb090a675f9b40a9b106,
 7a50b646fcd9ac7dd0b87299f79ccaa2a4b3af875bd0947221ba6dec1c1ba4add7f7f690c95cf3e796296cf4adc989f4c7ae7c8a37f4505229922fb6df13bb9e,
 8b2c4204982d2a2937261e648c20fe80d256dfb47bda27b420e76697897b0b0ebb42c140b4e8bf0f27dfee64c946039739467b073cf60d923a12c4f96d1c7da6,
 6dc585319e4cf7d73ede73819c6966ea4bed74aadbbcba1bbb777132f63d355965c3502bed7a04425d99cdcfb7694a1c133079e6d9b0ab080e3b874882b95ff4 # new node
]
Get the current block number of group2
$ [group:2]> getBlockNumber
2

#... Send transaction to group2
Deploy the HelloWorld contract and output contract address. If the contract fails to deploy, please check the consensus status of group2
$ [group:2] deploy HelloWorld
contract address:0xdfdd3ada340d7346c40254600ae4bb7a6cd8e660

Get the current block number of group2, it increases to 3. If not, please check the consensus status of group2
$ [group:2]> getBlockNumber
3

Exit the console
$ [group:2]> exit

Check the block generation status of the new node through log

Switch to the node directory
cd ~/fisco/nodes/127.0.0.1
Check the consensus status of the node(Ctrl+c returns the command line)
$ tail -f node2/log/* | grep "g:2.*++"
info|2019-02-11 18:41:31.625599| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=4,tx=0,nodeIdx=1,hash=c8a1ed9c...
......Other outputs are omitted here......

Check the block generation status of node2 and group2: new block generated
$ cat node2/log/* | grep "g:2.*Report"
info|2019-02-11 18:53:20.708366| [g:2][p:520][CONSENSUS][PBFT]^^^^^Report:,num=3,idx=3,hash=80c98d31...,next=10,tx=1,nodeIdx=1
node2 also reports a block with block number 3, indicating that node2 has joined group2.

Stop the node

Back to the node directory && stop the node
$ cd ~/fisco/nodes/127.0.0.1 && bash stop_all.sh

Parallel multi-group networking topology

Deploying parallel multi-group networking blockchain is similar with deploying star networking blockchain. Taking a four-node two-group parallel multi-group blockchain as an example:

	group 1: includs 4 nodes with the same IP 127.0.0.1;

	group 2: includs 4 nodes with the same IP 127.0.0.1.

In a real application scenario, it is not recommended to deploy multiple nodes on the same machine. It is recommended to select the number of deployed nodes according to the machine load.
To demonstrate the parallel multi-group expansion process, only group1 is created here first.
In a parallel multi-group scenario, node join and exit group operations are similar to star networking topology.

Important

	In a real application scenario, it is not recommended to deploy multiple nodes the same machine, It is recommended to determine the number of deployed nodes according to the machine load

	To demonstrate the parallel multi-group expansion process, only group1 is created here first

	In a parallel multi-group scenario, the operations of node joining into a group or leaving from a group are similar to star networking blockchain.

Build blockchain with a single group and 4 nodes

Generate a single-group four-node blockchain node configuration folder with the build_chain.sh script

$ mkdir -p ~/fisco && cd ~/fisco
Download build_chain.sh script
$ curl -#LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.7.2/build_chain.sh

If you have network issue for exec command above, please try:
$ curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/tools/build_chain.sh

$ chmod u+x build_chain.sh
#Build a local single-group four-node blockchain (in a production environment, it is recommended that each node be deployed on a different physical machine)
$ bash build_chain.sh -l 127.0.0.1:4 -o multi_nodes -p 20000,20100,7545
Generating CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
[INFO] FISCO-BCOS Path : bin/fisco-bcos
[INFO] Start Port : 20000 20100 7545
[INFO] Server IP : 127.0.0.1:4
[INFO] State Type : storage
[INFO] RPC listen IP : 127.0.0.1
[INFO] Output Dir : /home/ubuntu16/fisco/multi_nodes
[INFO] CA Key Path : /home/ubuntu16/fisco/multi_nodes/cert/ca.key
==
[INFO] All completed. Files in /home/ubuntu16/fisco/multi_nodes

Start all nodes

Switch to the node directory
$ cd ~/fisco/multi_nodes/127.0.0.1
$ bash start_all.sh

Check process
$ ps aux | grep fisco-bcos
ubuntu16 55028 0.9 0.0 986384 6624 pts/2 Sl 20:59 0:00 /home/ubuntu16/fisco/multi_nodes/127.0.0.1/node0/../fisco-bcos -c config.ini
ubuntu16 55034 0.8 0.0 986104 6872 pts/2 Sl 20:59 0:00 /home/ubuntu16/fisco/multi_nodes/127.0.0.1/node1/../fisco-bcos -c config.ini
ubuntu16 55041 0.8 0.0 986384 6584 pts/2 Sl 20:59 0:00 /home/ubuntu16/fisco/multi_nodes/127.0.0.1/node2/../fisco-bcos -c config.ini
ubuntu16 55047 0.8 0.0 986396 6656 pts/2 Sl 20:59 0:00 /home/ubuntu16/fisco/multi_nodes/127.0.0.1/node3/../fisco-bcos -c config.ini

Check consensus status of nodes

Check consensus status of node0(Ctrl+c returns to the command line)
$ tail -f node0/log/* | grep "g:1.*++"
info|2019-02-11 20:59:52.065958| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=2,hash=da72649e...

Check consensus status of node1
$ tail -f node1/log/* | grep "g:1.*++"
info|2019-02-11 20:59:54.070297| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=0,hash=11c9354d...

Check consensus status of node2
$ tail -f node2/log/* | grep "g:1.*++"
info|2019-02-11 20:59:55.073124| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=1,hash=b65cbac8...

Check consensus status of node3
$ tail -f node3/log/* | grep "g:1.*++"
info|2019-02-11 20:59:53.067702| [g:1][p:264][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=3,hash=0467e5c4...

Add group2 to the blockchain

The genesis configuration files in each group of parallel multi-group networking blockchain are almost the same, except group ID [group].id, which is the group number.

Switch to the node directory
$ cd ~/fisco/multi_nodes/127.0.0.1

Copy the configuration of group 1
$ cp node0/conf/group.1.genesis node0/conf/group.2.genesis
$ cp node0/conf/group.1.ini node0/conf/group.2.ini

Modify group ID
$ sed -i "s/id=1/id=2/g" node0/conf/group.2.genesis
$ cat node0/conf/group.2.genesis | grep "id"
Have modified to id=2

Update the list of consensus nodes in the "group.2.genesis" to remove obsolete consensus nodes

Copy the configuration to each node
$ cp node0/conf/group.2.genesis node1/conf/group.2.genesis
$ cp node0/conf/group.2.genesis node2/conf/group.2.genesis
$ cp node0/conf/group.2.genesis node3/conf/group.2.genesis
$ cp node0/conf/group.2.ini node1/conf/group.2.ini
$ cp node0/conf/group.2.ini node2/conf/group.2.ini
$ cp node0/conf/group.2.ini node3/conf/group.2.ini

Restart node
$ bash stop_all.sh
$ bash start_all.sh

Check consensus status of the group

Check the consensus status of node0 group2
$ tail -f node0/log/* | grep "g:2.*++"
info|2019-02-11 21:13:28.541596| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=2,hash=f3562664...

Check the consensus status of node1 group2
$ tail -f node1/log/* | grep "g:2.*++"
info|2019-02-11 21:13:30.546011| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=0,hash=4b17e74f...

Check the consensus status of node2 group2
$ tail -f node2/log/* | grep "g:2.*++"
info|2019-02-11 21:13:59.653615| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=1,hash=90cbd225...

Check the consensus status of node3 group2
$ tail -f node3/log/* | grep "g:2.*++"
info|2019-02-11 21:14:01.657428| [g:2][p:520][CONSENSUS][SEALER]++++++++Generating seal on,blkNum=1,tx=0,nodeIdx=3,hash=d7dcb462...

Send transactions to groups

Download console

If you have never downloaded the console, please do the following to download the console, otherwise copy the console to the ~/fisco directory:
$ cd ~/fisco
Download console
$ curl -#LO https://github.com/FISCO-BCOS/console/releases/download/v2.9.2/download_console.sh

If you have network issue for exec command above, please try:
$ curl -#LO https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/download_console.sh

bash download_console.sh

Configuration console

Get channel_port
$ grep "channel_listen_port" multi_nodes/127.0.0.1/node0/config.ini
multi_nodes/127.0.0.1/node0/config.ini: channel_listen_port=20100

Switch to console subdirectory
$ cd console
Copy node certificate
$ cp ~/fisco/multi_nodes/127.0.0.1/sdk/* conf

Copy the console configuration
$ cp ~/fisco/console/conf/config-example.toml ~/fisco/console/conf/config.toml

Modify the node port of the console connection to 20100 and 20101
The linux system uses the following commands:
$ sed -i 's/127.0.0.1:20200/127.0.0.1:21000/g' ~/fisco/console/conf/config.toml
$ sed -i 's/127.0.0.1:20201/127.0.0.1:21001/g' ~/fisco/console/conf/config.toml

The mac system uses the following commands:
$ sed -i .bkp 's/127.0.0.1:20200/127.0.0.1:21000/g' ~/fisco/console/conf/config.toml
$ sed -i .bkp 's/127.0.0.1:20201/127.0.0.1:21001/g' ~/fisco/console/conf/config.toml

Send transactions to groups via console

... Start console ...
$ bash start.sh
The following information output indicates that the console is successfully started. If the startup fails, check whether the certificate configuration and the channel listen port configuration are correct.
===
Welcome to FISCO BCOS console(2.6.1)!
Type 'help' or 'h' for help. Type 'quit' or 'q' to quit console.
 ________ ______ ______ ______ ______ _______ ______ ______ ______
| | \/ \ / \ / \ | \ / \ / \ / \
| $$$$$$$$\$$$$$| $$$$$$| $$$$$$| $$$$$$\ | $$$$$$$| $$$$$$| $$$$$$| $$$$$$\
| $$__ | $$ | $$___\$| $$ \$| $$ | $$ | $$__/ $| $$ \$| $$ | $| $$___\$$
| $$ \ | $$ \$$ \| $$ | $$ | $$ | $$ $| $$ | $$ | $$\$$ \
| $$$$$ | $$ _\$$$$$$| $$ __| $$ | $$ | $$$$$$$| $$ __| $$ | $$_\$$$$$$\
| $$ _| $$_| __| $| $$__/ | $$__/ $$ | $$__/ $| $$__/ | $$__/ $| __| $$
| $$ | $$ \\$$ $$\$$ $$\$$ $$ | $$ $$\$$ $$\$$ $$\$$ $$
 \$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$

===
... Send transaction to group 1...
Get the current block number
$ [group:1]> getBlockNumber
0
Deploy the HelloWorld contract to group1. If the deployment fails, check whether the consensus status of group1 is normal
$ [group:1]> deploy HelloWorld
transaction hash: 0xd0305411e36d2ca9c1a4df93e761c820f0a464367b8feb9e3fa40b0f68eb23fa
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Get the current block number. If the block number is not increased, please check if the group1 is normal
$ [group:1]> getBlockNumber
1

... send transaction to group 2...
Switch to group2
$ [group:1]> switch 2
Switched to group 2.
Get the current block number
$ [group:2]> getBlockNumber
0
Deploy HelloWorld contract to group2
$ [group:2]> deploy HelloWorld
transaction hash: 0xd0305411e36d2ca9c1a4df93e761c820f0a464367b8feb9e3fa40b0f68eb23fa
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744
Get the current block number. If the block number is not increased, please check if the group1 is normal
$ [group:2]> getBlockNumber
1
Exit console
$[group:2]> exit

Check block generation status of nodes through log

Switch to the node directory
$ cd ~/fisco/multi_nodes/127.0.0.1/

Check block generation status of group1, and to see that the block with block number of 1 belonging to group1 is reported.
$ cat node0/log/* | grep "g:1.*Report"
info|2019-02-11 21:14:57.216548| [g:1][p:264][CONSENSUS][PBFT]^^^^^Report:,num=1,sealerIdx=3,hash=be961c98...,next=2,tx=1,nodeIdx=2

Check block generation status of group2, and to see that the block with block number of 1 belonging to group2 is reported.
$ cat node0/log/* | grep "g:2.*Report"
info|2019-02-11 21:15:25.310565| [g:2][p:520][CONSENSUS][PBFT]^^^^^Report:,num=1,sealerIdx=3,hash=5d006230...,next=2,tx=1,nodeIdx=2

Stop nodes

Back to nodes folder && stop the node
$ cd ~/fisco/multi_nodes/127.0.0.1 && bash stop_all.sh

 Distributed storage

Distributed storage

Install MySQL

The currently supported distributed database is MySQL. Before using distributed storage, you need to set up the MySQL service. The configuration on Ubuntu and CentOS servers is as follows:

Ubuntu: Execute the following three commands to configure the root account password during the installation process.

sudo apt install -y mysql-server mysql-client libmysqlclient-dev

Start the MySQL service and log in:
root account password.

sudo service mysql start
mysql -uroot -p

CentOS: Perform the following two commands to install.

yum install mysql*
some versions of linux need to install mariadb which is a branch of mysql
yum install mariadb*

Start the MySQL service. Log in and set a password for the root user.

service mysqld start
#If mariadb is installed, to use the following command to start
service mariadb start
mysql -uroot
mysql> set password for root@localhost = password('123456');

Configure MySQL parameters

check the configuration file my.cnf

mysql --help | grep 'Default options' -A 1

After execution, you can see the following data:

Default options are read from the following files in the given order:
/etc/mysql/my.cnf /etc/my.cnf ~/.my.cnf

Configure my.cnf

mysql loads the configuration from /etc/mysql/my.cnf, /etc/my.cnf, ~/.my.cnf in turn. Search these files in turn, find the first file that exists, and add the following content in the [mysqld] section (modify the value if it exists).

max_allowed_packet = 1024M
sql_mode =STRICT_TRANS_TABLES
ssl=0
default_authentication_plugin = mysql_native_password

Restart mysql-server and verify parameters

Ubuntu：Execute the following command to restart

service mysql restart

CentOS：Execute the following command to restart

service mysqld start
If mariadb is installed, use the following command to start:
service mariadb start

Validation parameter:

mysql -uroot -p
Execute the following command to view the value of max_allowed_packet
MariaDB [(none)]> show variables like 'max_allowed_packet%';
+--------------------+------------+
| Variable_name | Value |
+--------------------+------------+
| max_allowed_packet | 1073741824 |
+--------------------+------------+
1 row in set (0.00 sec)

Execute the following command to view the value of sql_mode
MariaDB [(none)]> show variables like 'sql_mode%';
+---------------+---------------------+
| Variable_name | Value |
+---------------+---------------------+
| sql_mode | STRICT_TRANS_TABLES |
+---------------+---------------------+
1 row in set (0.00 sec)

Node directly connected to MySQL

FISCO BCOS in version 2.0.0-rc3 supports nodes directly connected to MySQL through connection pool. Compared to the proxy access MySQL mode, this configuration is simple. No need to manually create a database. Please refer to the configuration method:

Logical architecture diagram

The multi-group architecture means that blockchain node supports launching multiple groups. The transaction processing, data storage, and block consensus among the groups are isolated from each other. Therefore, each node in the group corresponds to a database instance. For example, in blockchain network, there are three nodes A, B, and C, where A and B belong to Group1, and B and C belong to Group2. Nodes A and C correspond to one database instance respectively, and Node B corresponds to two database instances. The logical architecture diagram is as follows.
[image: ../../_images/storage1.png]

As shown in the above figure, NodeB belongs to multiple groups. The database instances which are corresponded by the same node in different groups are separate. For distinguishing the same node in different groups, the nodes of A, B, and C are respectively represented with Group1_A (NodeA in Group1, same as below), Group1_B, Group2_B, and Group2_C.

We use the above figure as an example to describe the setup configuration process in following.

Build node

Before using distributed storage, you need to complete the establishment of the alliance chain and the configuration of multiple groups. For details, refer to the following steps.

Prepare dependence

mkdir -p ~/fisco && cd ~/fisco
Download build_chain.sh script
curl -#LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.7.2/build_chain.sh && chmod u+x build_chain.sh

Note

	If the script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/tools/gen_node_cert.sh

Generate configuration file

generate blockchain configuration file ipconf
cat > ipconf << EOF
127.0.0.1:1 agencyA 1
127.0.0.1:1 agencyB 1,2
127.0.0.1:1 agencyC 2
EOF

view configuration file
cat ipconf
127.0.0.1:1 agencyA 1
127.0.0.1:1 agencyB 1,2
127.0.0.1:1 agencyC 2

Build blockchain with build_chain

build blockchain（please confirm the ports of 30300~30302，20200~20202，8545~8547 are not occupied）
The difference right here is that the parameter "-s MySQL" is appended to the command and the port is changed.
bash build_chain.sh -f ipconf -p 30300,20200,8545 -s MySQL
==
Generating CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:1 Agency:agencyA Groups:1
Processing IP:127.0.0.1 Total:1 Agency:agencyB Groups:1,2
Processing IP:127.0.0.1 Total:1 Agency:agencyC Groups:2
==
Generating configurations...
Processing IP:127.0.0.1 Total:1 Agency:agencyA Groups:1
Processing IP:127.0.0.1 Total:1 Agency:agencyB Groups:1,2
Processing IP:127.0.0.1 Total:1 Agency:agencyC Groups:2
==
Group:1 has 2 nodes
Group:2 has 2 nodes

Modify node ini file

In group.[group].ini configuration file, the configuration information of MySQL is related to this feature. Suppose that the MySQL configuration information is as follows:

node	db_ip	db_port	db_username	db_passwd	db_name
Group1_A	127.0.0.1	3306	root	123456	db_Group1_A
Group1_B	127.0.0.1	3306	root	123456	db_Group1_B
Group2_B	127.0.0.1	3306	root	123456	db_Group2_B
Group2_C	127.0.0.1	3306	root	123456	db_Group2_C

Modify the group.1.ini configuration in node0

Modify the content in the section ~/fisco/nodes/127.0.0.1/node0/conf/group.1.ini[storage] and add the following content. Db_passwd is the corresponding password.

 	db_ip=127.0.0.1
 	db_port=3306
 	db_username=root
 	db_name=db_Group1_A
 	db_passwd=

Modify the group.1.ini configuration in node1

Modify the content in the section ~/fisco/nodes/127.0.0.1/node1/conf/group.1.ini[storage] and add the following content. Db_passwd is the corresponding password.

 	db_ip=127.0.0.1
 	db_port=3306
 	db_username=root
 	db_name=db_Group1_B
 	db_passwd=

Modify the group.2.ini configuration in node1

Modify the content in the section ~/fisco/nodes/127.0.0.1/node1/conf/group.2.ini[storage] and add the following content. Db_passwd is the corresponding password.

 	db_ip=127.0.0.1
 	db_port=3306
 	db_username=root
 	db_name=db_Group2_B
 	db_passwd=

Modify the group.2.ini configuration in node2

Modify the content in the section ~/fisco/nodes/127.0.0.1/node2/conf/group.2.ini[storage] and add the following content. Db_passwd is the corresponding password.

 	db_ip=127.0.0.1
 	db_port=3306
 	db_username=root
 	db_name=db_Group2_C
 	db_passwd=

Start node

cd ~/fisco/nodes/127.0.0.1;sh start_all.sh

Check process

ps -ef|grep fisco-bcos|grep -v grep
fisco 111061 1 0 16:22 pts/0 00:00:04 /data/home/fisco/nodes/127.0.0.1/node2/../fisco-bcos -c config.ini
fisco 111065 1 0 16:22 pts/0 00:00:04 /data/home/fisco/nodes/127.0.0.1/node0/../fisco-bcos -c config.ini
fisco 122910 1 1 16:22 pts/0 00:00:02 /data/home/fisco/nodes/127.0.0.1/node1/../fisco-bcos -c config.ini

If it starts successfully, you can see there are 3 fisco-bcos processes. If it fails, please refer to the log to confirm whether the configuration is correct.

Check output of log

Execute the following command to view the number of nodes connected to node0 (similar to other nodes)

tail -f nodes/127.0.0.1/node0/log/log* | grep connected

Normally, you will see an output similar to the following, and you can see that node0 is connecting to the other two nodes from it.

info|2019-05-28 16:28:57.267770|[P2P][Service] heartBeat,connected count=2
info|2019-05-28 16:29:07.267935|[P2P][Service] heartBeat,connected count=2
info|2019-05-28 16:29:17.268163|[P2P][Service] heartBeat,connected count=2
info|2019-05-28 16:29:27.268284|[P2P][Service] heartBeat,connected count=2
info|2019-05-28 16:29:37.268467|[P2P][Service] heartBeat,connected count=2

Execute the following command to check if it is in consensus

tail -f nodes/127.0.0.1/node0/log/log* | grep +++

Normally, the output will continue to output ++++Generating seal to indicate that the consensus is normal.

info|2019-05-28 16:26:32.454059|[g:1][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=28,tx=0,nodeIdx=3,hash=c9c859d5...
info|2019-05-28 16:26:36.473543|[g:1][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=28,tx=0,nodeIdx=3,hash=6b319fa7...
info|2019-05-28 16:26:40.498838|[g:1][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=28,tx=0,nodeIdx=3,hash=2164360f...

Send transaction by console

Prepare dependence

cd ~/fisco;
curl -#LO https://github.com/FISCO-BCOS/console/releases/download/v2.9.2/download_console.sh && bash download_console.sh
cp -n console/conf/config-example.toml console/conf/config.toml
cp nodes/127.0.0.1/sdk/* console/conf/

Note

	If the script cannot be downloaded for a long time due to network problems, try https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/download_console.sh

Modify configuration file

Modify ~/fisco/console/conf/applicationContext.xml to the following configuration (partial information)

peers=["127.0.0.1:20300", "127.0.0.1:20301"] # The peer list to connect

Start console

cd ~/fisco/console
sh start.sh 1
#deploy TableTest contract
[group:1]> deploy TableTest
contract address:0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744

view the table in the database

MySQL -uroot -p123456 -A db_Group1_A
use db_Group1_A;
show tables;
--+
| Tables_in_db_Group1_A |
+--+
| c_8c17cf316c1063ab6c89df875e96c9f0f5b2f744 |
| c_f69a2fa2eca49820218062164837c6eecc909abd |
| _sys_block_2_nonces_ |
| _sys_cns_ |
| _sys_config_ |
| _sys_consensus_ |
| _sys_current_state_ |
| _sys_hash_2_block_ |
| _sys_number_2_hash_ |
| _sys_table_access_ |
| _sys_tables_ |
| _sys_tx_hash_2_block_ |
+--+
12 rows in set (0.02 sec)

view the table in the database

show tables;
+--+
| Tables_in_db_Group1_A |
+--+
| c_8c17cf316c1063ab6c89df875e96c9f0f5b2f744 |
| c_f69a2fa2eca49820218062164837c6eecc909abd |
| _sys_block_2_nonces_ |
| _sys_cns_ |
| _sys_config_ |
| _sys_consensus_ |
| _sys_current_state_ |
| _sys_hash_2_block_ |
| _sys_number_2_hash_ |
| _sys_table_access_ |
| _sys_tables_ |
| _sys_tx_hash_2_block_ |
| u_t_test |
+--+

Inserting a record to the database

#insert data into the table
call TableTest 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744 insert "fruit" 100 "apple"
0x082ca6a5a292f1f7b20abeb3fb03f45e0c6f48b5a79cc65d1246bfe57be358d1

open the MySQL client and query the u_t_test table data

#view data in the user table
select * from u_t_test\G;
*************************** 1. row ***************************
 id: 31
 hash: 0a0ed3b2b0a227a6276114863ef3e8aa34f44e31567a5909d1da0aece31e575e
 num: 3
 status: 0
 name: fruit
 item_id: 100
item_name: apple
1 row in set (0.00 sec)

 SDK allowlist mechanism

SDK allowlist mechanism

FISCO BCOS 2.0 started to support multiple groups, but did not control the SDK’s access rights to multiple groups. As long as the SDK can establish a connection with the node, it can access all the groups of the node, which will bring security risks.

FISCO BCOS v2.6.0 introduces a group-level SDK allowlist mechanism, controls the SDK’s access rights to groups, and provides scripts to support the dynamic loading of the SDK allowlist list, further improving the security of the blockchain system.

Note

	When the number of SDK allowlist lists in the configuration item is 0, the node does not enable the SDK allowlist control function, and any SDK can access the group;

	The SDK allowlist is a node-level access control mechanism. The node that enables this function controls the SDK’s access rights to the node group based on the locally configured allowlist;

	The SDK allowlist mechanism controls SDK access to all group-level interfaces of the node

Configuration

Note

The SDK allowlist configuration of each group is located in the [sdk_allowlist] configuration item of the group.{group_id}.ini configuration file. For details, please refer to here

Get SDK public key

Before adding the SDK to the allowlist, you first need to obtain the SDK public key, which is used to set the public_key of group.*.ini. The methods for obtaining the SDK public key for each version are as follows:

Newly built chain

The SDK certificate generated by the newly built chain comes with SDK private key information. The standard version is sdk.publickey, and the OSCCA-approved version is gmsdk.publickey:

Assuming that the certificate has been copied to the SDK, enter the SDK directory and execute the following command (sdk is located in the ~/fisco directory)
$ cd ~/fisco/java-sdk

Obtain the public key of the OSCCA-approved SDK
$ cat dist/conf/sdk.publickey

Obtain the public key of the standard SDK
$ cat dist/conf/gmsdk.publickey

Old chain

The old chain needs to use openssl or tassl commands to generate sdk.publickey (the OSCCA-approved version is gmsdk.publickey), and load the public key from the generated file, as follows:

Standard Version

Enter the SDK directory and execute the following command:
$ openssl ec -in dist/conf/sdk.key -text -noout 2> /dev/null | sed -n '7,11p' | tr -d ": \n" | awk '{print substr($0,3);}' | cat > dist/conf/sdk.publickey
Obtain the public key
$ cat dist/conf/sdk.publickey

OSCCA-approved Version

Note: It must be ensured that ~/.fisco/tassl exists
$ ~/.fisco/tassl ec -in dist/conf/gmsdk.key -text -noout 2> /dev/null | sed -n '7,11p' | sed 's/://g' | tr "\n" " " | sed 's/ //g' | awk '{print substr($0,3);}' | cat > dist/conf/gmsdk.publickey
Get SDK public key
$ cat dist/conf/gmsdk.publickey

Dynamically modify the SDK allowlist

In order to facilitate users to modify the SDK allowlist list, the reload_sdk_allowlist.sh script is provided in the scripts directory of each node to reload the SDK allowlist.

Note

There is no reload_sdk_allowlist.sh script on the old chain nodes, and the script can be downloaded by the command curl -#LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master-2.0/tools/reload_sdk_allowlist.sh.

Example

This section takes adding and modifying the console to the whitelist as an example to show in detail how to use the SDK allowlist mechanism.

Build a blockchain and copy the certificate to the console

Please refer to Installation.

Get console public key information

Enter the console directory
$ cd ~/fisco/console/

Obtain console public key information through sdk.publickey
$ cat conf/sdk.publickey
ebf5535c92f7116310ed9e0f9fc9bfc66a607415d4fa444d91f528485eff61b15e40a70bc5d73f0441d3959efbc7718c20bd452ac4beed5f6c4feb9fabc1f9f6

Enable the SDK allowlist mechanism

Add the public key of a console to the allowlist of the group.[group_id].ini configuration file of node0:

[sdk_allowlist]
public_key.0=b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36

Reload the SDK allowlist

$ bash node0/scripts/reload_sdk_allowlist.sh
 [INFO] node0 is trying to reload sdk allowlist. Check log for more information.

After the SDK allowlist is successfully hot-loaded, the node outputs the following log:
parseSDKAllowList,sdkAllowList=[b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36],enableSDKAllowListControl=true

Console access node

Note

Since the SDK allowlist is a node-level access control mechanism, in order to demonstrate the access control function of node0 to the SDK, the console only connects to node0.

Since node0 does not configure the console’s access rights to the group, the result of the deployment contract is as follows:

Deploy HelloWorld contract in the console
[group:1]> deploy HelloWorld
sendRawTransaction The SDK is not allowed to access this group

Add the console to the SDK allowlist

Configure the console to the allowlist of node0:

[sdk_allowlist]
public_key.0=b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36
public_key.1=ebf5535c92f7116310ed9e0f9fc9bfc66a607415d4fa444d91f528485eff61b15e40a70bc5d73f0441d3959efbc7718c20bd452ac4beed5f6c4feb9fabc1f9f6

Reload the SDK whitelist list:

$ bash node0/scripts/reload_sdk_allowlist.sh
 [INFO] node0 is trying to reload sdk allowlist. Check log for more information.

After the SDK allowlist is successfully hot-loaded, the node outputs the following log:
parseSDKAllowList,sdkAllowList=[b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36,ebf5535c92f7116310ed9e0f9fc9bfc66a607415d4fa444d91f528485eff61b15e40a70bc5d73f0441d3959efbc7718c20bd452ac4beed5f6c4feb9fabc1f9f6],enableSDKAllowListControl=true

Console access node

After node0 is added to the console to the allowlist, the console can deploy the contract normally, as follows:

[group:1]> deploy HelloWorld
contract address: 0xcd4ccd96c86fe8e4f27b056c0fdb7eb4ca201f0f

 Storage security

Storage security

The data of the alliance chain is only visible to members of the alliance. Disk encryption ensures the security of the data running on the alliance chain on the hard disk. Once the hard drive is taken out from the intranet environment of alliance chain, the data will not be decrypted.

Disk encryption encrypts the content stored on the hard disk by the node. The encrypted content includes: the data of the contract and the private key of the node.

For specific disk encryption introduction, please refer to: Introduction of Disk Encryption

Key Manager deployment

Each agency has a Key Manager. For specific deployment steps, please refer to Key Manager README [https://github.com/FISCO-BCOS/key-manager] or Key Manager Gitee README [https://gitee.com/FISCO-BCOS/key-manager]

Node building

Use the script [build_chain.sh] (../installation.md) to build a node with normal operations.

curl -#LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.9.1/build_chain.sh && chmod u+x build_chain.sh

Note

	If the script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/tools/build_chain.sh

bash build_chain.sh -l 127.0.0.1:4 -p 30300,20200,8545

Important

The node cannot be launched until the dataKey is configured. Before the node runs for the first time, it must be configured to use the disk encryption or not. Once the node starts running, it cannot be switched its state.

Key Manager launch

To launch key-manager directly. If key-manager is not deployed, refer to Key Manager README Introduction [https://github.com/FISCO-BCOS/key-manager].

parameter: port，superkey
./key-manager 8150 123xyz

launch successfully and print the log.

[1546501342949][TRACE][Load]key-manager started,port=8150

DataKey configuration

Important

The node configured by the dataKey must be newly generated node and has not been launched.

To execute the script, define dataKey, and get cipherDataKey

cd key-manager/scripts
bash gen_data_secure_key.sh 127.0.0.1 8150 123456

CiherDataKey generated: ed157f4588b86d61a2e1745efe71e6ea
Append these into config.ini to enable disk encryption:
[storage_security]
enable=true
key_manager_ip=127.0.0.1
key_manager_port=8150
cipher_data_key=ed157f4588b86d61a2e1745efe71e6ea

The script for getting cipherDataKey automatically prints out the ini configuration required for the disk encryption (see below). Now, the cipherDataKey is:cipher_data_key=ed157f4588b86d61a2e1745efe71e6ea

To write the ini configuration that has been disk encryption to the node configuration file (config.ini).

vim nodes/127.0.0.1/node0/config.ini

To put it at last like this.

[storage_security]
enable=true
key_manager_ip=127.0.0.1
key_manager_port=8150
cipher_data_key=ed157f4588b86d61a2e1745efe71e6ea

Encrypted node private key

To execute script and encrypt node private key

cd key-manager/scripts
parameter:ip port node private key file cipherDataKey
bash encrypt_node_key.sh 127.0.0.1 8150 ../../nodes/127.0.0.1/node0/conf/node.key ed157f4588b86d61a2e1745efe71e6ea

The node private key is automatically encrypted after execution, and the files before encryption is backed up to the file node.key.bak.xxxxxx. Please take care of the backup private key and delete the backup private key generated on the node

[INFO] File backup to "nodes/127.0.0.1/node0/conf/node.key.bak.1546502474"
[INFO] "nodes/127.0.0.1/node0/conf/node.key" encrypted!

If you check the node.key, you can see that it has been encrypted as ciphertext.

8b2eba71821a5eb15b0cbe710e96f23191419784f644389c58e823477cf33bd73a51b6f14af368d4d3ed647d9de6818938ded7b821394446279490b537d04e7a7e87308b66fc82ab3987fb9f3c7079c2477ed4edaf7060ae151f237b466e4f3f8a19be268af65d7b4ae8be37d81810c30a0f00ec7146a1125812989c2205e1e37375bc5e4654e569c21f0f59b3895b137f3ede01714e2312b74918e2501ac6568ffa3c10ae06f7ce1cbb38595b74783af5fea7a8a735309db3e30c383e4ed1abd8ca37e2aa375c913e3d049cb439f01962dd2f24b9e787008c811abd9a92cfb7b6c336ed78d604a3abe3ad859932d84f11506565f733d244f75c9687ef9334b8fabe139a82e9640db9e956b540f8b61675d04c3fb070620c7c135f3f4f6319aae8b6df2b091949a2c9938e5c1e5bb13c0f530764b7c2a884704637be953ce887

Important

All files that need to be encrypted are listed below. If they are not encrypted, the node cannot be launched.

	standard version: conf/node.key

	national cryptography version: conf/gmnode.key和conf/origin_cert/node.key

Node running

to launch node directly

cd nodes/127.0.0.1/node0/
./start.sh

Correct judgment

(1) The node runs and generates block normally, and the block information is continuously output.

tail -f nodes/127.0.0.1/node0/log/* | grep +++

(2) key-manager will print a log each time the node launches. For example, when a node launches, the log directly output by Key Manager is as follows.

[1546504272699][TRACE][Dec]Respond
{
 "dataKey" : "313233343536",
 "error" : 0,
 "info" : "success"
}

 Group members management

Group members management

FISCO BCOS introduces free nodes, observer nodes and consensus nodes which can be converted to each other by the console.

	Group member

	Consensus nodes (Sealer)

	Observer nodes (Observer)

	Non-Group member

	Free nodes (The node waiting for joining the group)

Operation command

The console provides three commands of AddSealer, AddObserver, and RemoveNode to convert the specified node to Sealer, Oberserver, and RemoveNode, and can use getSealerList, getObserverList, and getNodeIDList to view the current list of Sealer, Observer, and other nodes.

	addSealer: to set the corresponding node as the Sealer according to the NodeID;

	addObserver: to set the corresponding node as the Observer according to the NodeID;

	removeNode: to set the corresponding node as the RemoveNode according to the NodeID;

	getSealerList: to view the Sealer in the group;

	getObserverList: to view the Observer in the group;

	getNodeIDList: to view the NodeID in the group;

For example, to convert the specified nodes to Sealer, Observer, and RemoveNode, the main operation commands are as follows:

Important

Before accessing the node, please ensure that:

	Node ID exists and can execute cat that is getting from conf/node.nodeid in the node directory

	All Sealers are normal, and they will output +++ logs.

to get Node ID (to set the directory as ~/nodes/192.168.0.1/node0/）
$ cat ~/fisco/nodes/192.168.0.1/node0/conf/node.nodeid
7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50

to connect console (to set the console in the ~/fisco/console directory)
$ cd ~/fisco/console

$ bash start.sh

to convert the specified node to Sealer
[group:1]> addSealer 7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50
to view the list of Sealer
[group:1]> getSealerList
[
	7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50
]

to convert the specified node to Observer
[group:1]> addObserver 7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50

to view the list of Observer
[group:1]> getObserverList
[
	7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50
]

to convert the specified node to removeNode
[group:1]> removeNode 7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50

to view the list of NodeID
[group:1]> getNodeIDList
[
	7a056eb611a43bae685efd86d4841bc65aefafbf20d8c8f6028031d67af27c36c5767c9c79cff201769ed80ff220b96953da63f92ae83554962dc2922aa0ef50
]
[group:1]> getSealerList
[]
[group:1]> getObserverList
[]

Operation cases

The following describes the operations of group expansion and node exit in detail with specific operation cases. Group expansion is divided into two phases, namely adding nodes to the network and adding nodes to the group. Also, node exit is divided into two phases, namely exiting node from the group and exiting node from the network.

Operation methods

	Node configuration modification: After the node modifies its own configuration, it need to be restarted to takes effect. The involved operations include network adding/exit and CA blacklist inclusion/removal.

	Transaction uploading to the chain: To modify the transaction, the configuration of group consensus is needed, and the operation involves the modification of node type. The current sending transaction path is the pre-compiled service interface provided by the console and SDK.

	RPC inquiry：To use the command curl to inquire the information on the chain, and the operation involves the query of the group node.

Operation steps

In this section, the following figure is taken as an example to describe the operations of expansion and network exit show above.

The dotted line indicates that network communication can be performed among nodes, and the solid line indicates that nodes have group relationships base on the communication among nodes, and colors’ difference distinguish different group relationships.

The below figure below shows a network with three groups of which Group3 has three nodes. Whether Group3 has intersection nodes with other groups does not affect the versatility of the following operation process.

[image: ../../_images/multi_ledger_example.png]

 group example
Here we take the following node information of Group 3 as an example:The folder name of node 1 is node0, IP port 127.0.0.1:30400, the former 4 bytes of nodeID b231b309…

The folder name of node 2 is node1, IP port 127.0.0.1:30401, the former 4 bytes of nodeID aab37e73…

The folder name of node 3 is node2, IP port 127.0.0.1:30402, the former 4 bytes of nodeID d6b01a96…

Node A to join the network

Background:

Node 3 is outside the network and wants to join it now.

Operation steps:

1 . enter nodes folder and execute gen_node_cert.sh to generate node folder. Here we name the folder as node2, which contains conf/ folder;

acquire script
$ curl -#LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master-2.0/tools/gen_node_cert.sh && chmod u+x gen_node_cert.sh
execute, -c is the ca route given when the node was generated, agency is the agency name, -o is the name of the node folder to be generated (use -g when the node type is GM)
$./gen_node_cert.sh -c nodes/cert/agency -o node2

Note

	If download failed, please try curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/tools/gen_node_cert.sh

2 . copy node 2 under nodes/127.0.0.1/, parallel with other node folder (node0, node1);

$ cp -r ./node2/ nodes/127.0.0.1/

3 . enter nodes/127.0.0.1/, copy node0/config.ini, node0/start.sh and node0/stop.sh to node2 directory;

$ cd nodes/127.0.0.1/
$ cp node0/config.ini node0/start.sh node0/stop.sh node2/

4 . modify node2/config.ini. For [rpc] model, modify channel_listen_port and jsonrpc_listen_port; for [p2p] model, modify listen_port and add its node information in node..

Note

For the convenience of development and experience, the recommended configuration of channel_listen_ip/listen_ip is 0.0.0.0. For security considerations, please modify it to a safe listening address according to the actual business network situation, such as the internal IP or a specific external IP

$ vim node2/config.ini
[rpc]
 ;rpc listen ip
 channel_listen_ip=0.0.0.0
 jsonrpc_listen_ip=127.0.0.1
 ;channelserver listen port
 channel_listen_port=20302
 ;jsonrpc listen port
 jsonrpc_listen_port=8647
[p2p]
 ;p2p listen ip
 listen_ip=0.0.0.0
 ;p2p listen port
 listen_port=30402
 ;nodes to connect
 node.0=127.0.0.1:30400
 node.1=127.0.0.1:30401
 node.2=127.0.0.1:30402

5 . node 3 copies node1/conf/group.3.genesis(which contains initial list of group nodes) and node1/conf/group.3.ini to node2/conf folder, without modification;

$ cp node1/conf/group.3.genesis node2/conf/
$ cp node1/conf/group.3.ini node2/conf/

6 . execute node2/start.sh and start node 3;

$./node2/start.sh

7 . confirm that node 3 is connected with node 1, 2, then it has joined the network now.

Open the DEBUG log to check the number and ID of nodes connected with node 2
The following log information indicates that node 2 is connected with 2 nodes(with the former 4 bytes being b231b309 and aab37e73)
$ tail -f node2/log/log* | grep P2P
debug|2019-02-21 10:30:18.694258| [P2P][Service] heartBeat ignore connected,endpoint=127.0.0.1:30400,nodeID=b231b309...
debug|2019-02-21 10:30:18.694277| [P2P][Service] heartBeat ignore connected,endpoint=127.0.0.1:30401,nodeID=aab37e73...
info|2019-02-21 10:30:18.694294| [P2P][Service] heartBeat connected count,size=2

		- If CA whitelist is enabled, you should configure every nodeID into every nodes’ whitelist configuration and reload the configuration. Read “CA blacklist and whitelist” for more.
	
	The other configurations of config.ini copied from node 1 remain the same;

	Theoretically, node 1, 2 can accomplish the extension of node 3 without changing their p2p connecting nodes list;

	The group to be chosen in step 5 are recommended to be the group to be joined by node 3;

	To keep in full connection status, we recommend users to add the information of node 3 to the p2p connecting nodes list in config.ini of node 1, 2, and restart node 1, 2.

Node A to quit the network

Background:

Node 3 is in the network and connected with node 1, 2. Now node 3 needs to quit the network.

Operation steps:

1 . For node 3, clear up the P2P connecting nodes list, and restart node 3;

execute under node 2
$./stop.sh
$./start.sh
nohup: appending output to ‘nohup.out’

2 . For node 1, 2, remove node 3 form their P2P connecting nodes list(if has), and restart node 1, 2;

3 . Confirm that node 3 has been disconnected with node 1, 2, and it has quitted the network now.

Note

	node 3 has to quit the group before quitting the network, which is guaranteed by users and will not be verified by the system;

	the networking process is started by nodes. If missing step 2, node 3 can still get the p2p connecting request from node 1, 2 and start connection. It can be stopped by using CA blacklist.

	If CA whitelist is enabled, you should delete the node from every nodes’ whitelist configuration and reload the configuration. Read “CA blacklist and whitelist” for more.

Node A to join a group

Background:

Group 3 contains node 1, 2, either generates block in turn. Now node 3 wants to join the group.

Operation steps:

	Node 3 joins the network;

	Set node 3 as the consensus node using console addSealer according to the node ID;

	check if the node ID of node 3 is included in the consensus nodes of group 3 through console getSealerList. If is, then it has joined the group successfully.

Note

	node ID of node 3 can be acquired through cat nodes/127.0.0.1/node2/conf/node.nodeid;

	the first start of node 3 will write the configured group node initial list to the node system list, when the blocks stop synchronizing, the node system lists of each node are the same;

	node 3 needs to have access to the network before joining the group, which will be verified by the system;

	the group fixed configuration file of node 3 should be the same with node 1, 2.

Node A to quit the group

Background:

Group 3 contains node 1, 2, 3, either of which generates block in turn. Now node 3 wants to quit the group.

Operation steps:

	set node 3 as free node according to its ID using console removeNode;

	check if the node ID of node 3 is included in the consensus nodes of group 3 through console getSealerList. If not, then node 3 has quited the group.

Additional:

Note

	node 3 can quit the group as a consensus node or observer node.

 Permission control

Permission control

TODO: add Role Based Access control

Roles and Permissions

Permission conrtol based on Table permission

This section will introduce the operations concerning permission control, for details please check Design of Permission Control.

For the system is defaulted with no permission setting record, any account can perform permission setting. For example, account 1 gives permission of contract deployment to itself, but account 2 also sets itself with permission of contract deployment. So the setting of account 1 becomes meaningless for every other node can add permissions freely. Therefore, before building consortium chain, confirming permission setting rules is needed. We can use grantPermissionManager instruction to set manager account, that is to give some account access to permission setting, which other accounts don’t have.

Operations

The operations concerning permission control of following functions are introduced in this section:

	Permission of chain manager

	Permission of system manager

	Permission of contract deployment and user table creation

	Permission of Contract deployment using CNS

	Permission of node management

	Permission to modify system parameter

	Permission to write user table

Environment configuration

Configure and start the nodes and console of FISCO BCOS 2.0+. For reference please check Installation.

Tools for permission control

FISCO BCOS offers permission control of console commands (developers can call PermissionService API of SDK API for permission control). The involved permission control commands are:

	Command
	Parameter
	Function

	grantPermissionManager
	address
	Grant permission to be chain manager

	revokePermissionManager
	address
	Revoke permission of chain manager

	listPermissionManager
	
	Inquire list of accounts with chain manager permission

	grantDeployAndCreateManager
	address
	Grant permission to deploy contract and create user table

	revokeDeployAndCreateManager
	address
	Revoke permission to deploy contract and create user table

	listDeployAndCreateManager
	
	Inquire list of accounts with permission to deploy contract and create user table

	grantNodeManager
	address
	Grant permission to manage node

	revokeNodeManager
	address
	Revoke permission to manage node

	listNodeManager
	
	Inquire list of accounts with permission to manage node

	grantCNSManager
	address
	Grant CNS permission

	revokeCNSManager
	address
	Revoke CNS permission

	listCNSManager
	
	Inquire list of accounts with CNS permission

	grantSysConfigManager
	address
	Grant permission to modify system parameter

	revokeSysConfigManager
	address
	Revoke permission to modify system parameter

	listSysConfigManager
	
	Inquire list of accounts with permission to modify system parameter

	grantUserTableManager
	table_name address
	Grant permission to write user table

	revokeUserTableManager
	table_name address
	Revoke permission to write user table

	listUserTableManager
	table_name
	Inquire list of accounts with permission to write user table

Permission control example

Console provides script get_account.sh to generate accounts. The account files will be stored in accounts folder. Console can set active accounts. The operation method is introduced in Console tutorial. Therefore, through console we can set account to experience permission control. For account safety, we will generate 3 PKCS12 account files under the root folder of console by get_account.sh script. Please remember the password during generation. The 3 PKCS12 account files are:

account 1
0x2c7f31d22974d5b1b2d6d5c359e81e91ee656252.p12
account 2
0x7fc8335fec9da5f84e60236029bb4a64a469a021.p12
account 3
0xd86572ad4c92d4598852e2f34720a865dd4fc3dd.p12

Now we can open 3 Linux terminal and log in console with the 3 accounts separately.

Log in with account 1:

$./start.sh 1 -p12 accounts/0x2c7f31d22974d5b1b2d6d5c359e81e91ee656252.p12

Log in with account 2:

$./start.sh 1 -p12 accounts/0x7fc8335fec9da5f84e60236029bb4a64a469a021.p12

Log in with account 3：

$./start.sh 1 -p12 accounts/0xd86572ad4c92d4598852e2f34720a865dd4fc3dd.p12

Grant permission of chain manager

The 3 accounts play 3 kinds of roles. Account 1 performs chain manager, account 2 performs system manager and account 3 the regular account. Chain manager has permission for access control, namely granting permissions. System manager can manager permissions related to system functions, each of which should be granted independently, including deploying contract, creating user table, managing nodes and deploying contract with CNS and modifying system parameter. Chain manager can grant other accounts to be chain manager or system manager, or grant regular accounts to write table list.

Initial status of chain contains no permission records. Now, we can enter the console of account 1 and set itself as the chain manager, so other accounts are regular accounts.

[group:1]> grantPermissionManager 0x2c7f31d22974d5b1b2d6d5c359e81e91ee656252
{
 "code":0,
 "msg":"success"
}

[group:1]> listPermissionManager

| address | enable_num |
| 0x2c7f31d22974d5b1b2d6d5c359e81e91ee656252 | 1 |

Account 1 is set as the chain manager.

Grant permission of system manager

Grant permission to deploy contract and create user table

Account 1 grants permission of system manager to account 2. At first, grant account 2 with permission to deploy contract and create user table.

[group:1]> grantDeployAndCreateManager 0x7fc8335fec9da5f84e60236029bb4a64a469a021
{
 "code":0,
 "msg":"success"
}

[group:1]> listDeployAndCreateManager

| address | enable_num |
| 0x7fc8335fec9da5f84e60236029bb4a64a469a021 | 2 |

Log in console with account 2 and deploy TableTest contract offered by console. Code of TableTest.sol contract is here. The CRUD operations of user table t_test are also provided.

[group:1]> deploy TableTest.sol
contract address:0xfe649f510e0ca41f716e7935caee74db993e9de8

Call create API of TableTest to create user table t_test.

[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 create
transaction hash:0x67ef80cf04d24c488d5f25cc3dc7681035defc82d07ad983fbac820d7db31b5b

Event logs

createResult index: 0
count = 0

User table t_test is created successfully.

Log in console with account 3 and deploy TableTest contract.

[group:1]> deploy TableTest.sol
{
 "code":-50000,
 "msg":"permission denied"
}

Account 3 fails to deploy contract as it has no permission.

	Note: deploying contract and creating user table are “2-in-1” control items. When using CRUD interface contracts, we suggest to create the needed tables (creating tables in building function of contract) when deploying contract, otherwise “table-missing” error may occur when reading or writing table. If it is needed to dynamically create table, the permission should be granted to minority accounts, otherwise there will be many invalid tables on blockchain.

Grant permission to deploy contract using CNS

Console provides 3 commands involving CNS:

	command name
	parameter
	function

	deployByCNS
	contractName contractVersion
	deploy contract using CNS

	callByCNS
	contractName contractVersion funcName params
	call contract using CNS

	queryCNS
	contractName [contractVersion]
	inquire CNS information

Note: permission of deployByCNS command is controllable and needs permission to deploy contract and use CNS at the same time, permissions of callByCNS and queryCNS commands are not controllable.

Log in console with account 1, grant account 2 with permission to deploy contract using CNS.

[group:1]> grantCNSManager 0x7fc8335fec9da5f84e60236029bb4a64a469a021
{
 "code":0,
 "msg":"success"
}

[group:1]> listCNSManager

| address | enable_num |
| 0x7fc8335fec9da5f84e60236029bb4a64a469a021 | 13 |

Log in console with account 2, deploy contract using CNS

[group:1]> deployByCNS TableTest.sol 1.0
contract address:0x24f902ff362a01335db94b693edc769ba6226ff7

[group:1]> queryCNS TableTest.sol

| version | address |
| 1.0 | 0x24f902ff362a01335db94b693edc769ba6226ff7 |

Log in console with account 3, deploy contract using CNS

[group:1]> deployByCNS TableTest.sol 2.0
{
 "code":-50000,
 "msg":"permission denied"
}

[group:1]> queryCNS TableTest.sol

| version | address |
| 1.0 | 0x24f902ff362a01335db94b693edc769ba6226ff7 |

Account 3 fails to deploy contract by CNS due to lack of permission

Grant permission to manage nodes

Console provides 5 commands related to node type management:

	command name
	parameter
	function

	addSealer
	nodeID
	set node as consensus node

	addObserver
	nodeID
	set node as observer node

	removeNode
	nodeID
	set node as free node

	getSealerList
	
	inquire consensus node list

	getObserverList
	
	inquire observer node list

	Note: permissions of addSealer, addObserver and removeNode commands are controllable, while permissions of getSealerList and getObserverList commands are not.

Log in console with account 1, grant account 2 with permission to manage nodes.

[group:1]> grantNodeManager 0x7fc8335fec9da5f84e60236029bb4a64a469a021
{
 "code":0,
 "msg":"success"
}

[group:1]> listNodeManager

| address | enable_num |
| 0x7fc8335fec9da5f84e60236029bb4a64a469a021 | 20 |

Log in console with account 2, view consensus node list.

[group:1]> getSealerList
[
 01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e,
 279c4adfd1e51e15e7fbd3fca37407db84bd60a6dd36813708479f31646b7480d776b84df5fea2f3157da6df9cad078c28810db88e8044741152eb037a19bc17,
 320b8f3c485c42d2bfd88bb6bb62504a9433c13d377d69e9901242f76abe2eae3c1ca053d35026160d86db1a563ab2add127f1bbe1ae96e7d15977538d6c0fb4,
 c26dc878c4ff109f81915accaa056ba206893145a7125d17dc534c0ec41c6a10f33790ff38855df008aeca3a27ae7d96cdcb2f61eb8748fefe88de6412bae1b5
]

View observer node list:

[group:1]> getObserverList
[]

Set the first node ID as the observer node:

[group:1]> addObserver 01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e
{
 "code":0,
 "msg":"success"
}

[group:1]> getObserverList
[
 01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e
]

[group:1]> getSealerList
[
 279c4adfd1e51e15e7fbd3fca37407db84bd60a6dd36813708479f31646b7480d776b84df5fea2f3157da6df9cad078c28810db88e8044741152eb037a19bc17,
 320b8f3c485c42d2bfd88bb6bb62504a9433c13d377d69e9901242f76abe2eae3c1ca053d35026160d86db1a563ab2add127f1bbe1ae96e7d15977538d6c0fb4,
 c26dc878c4ff109f81915accaa056ba206893145a7125d17dc534c0ec41c6a10f33790ff38855df008aeca3a27ae7d96cdcb2f61eb8748fefe88de6412bae1b5
]

Log in console with account 3, add observer node to consensus node list.

[group:1]> addSealer 01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e
{
 "code":-50000,
 "msg":"permission denied"
}

[group:1]> getSealerList
[
 279c4adfd1e51e15e7fbd3fca37407db84bd60a6dd36813708479f31646b7480d776b84df5fea2f3157da6df9cad078c28810db88e8044741152eb037a19bc17,
 320b8f3c485c42d2bfd88bb6bb62504a9433c13d377d69e9901242f76abe2eae3c1ca053d35026160d86db1a563ab2add127f1bbe1ae96e7d15977538d6c0fb4,
 c26dc878c4ff109f81915accaa056ba206893145a7125d17dc534c0ec41c6a10f33790ff38855df008aeca3a27ae7d96cdcb2f61eb8748fefe88de6412bae1b5
]

[group:1]> getObserverList
[
 01cd46feef2bb385bf03d1743c1d1a52753129cf092392acb9e941d1a4e0f499fdf6559dfcd4dbf2b3ca418caa09d953620c2aa3c5bbe93ad5f6b378c678489e
]

Account 3 fails to add consensus node for lack of permission to manage nodes. Now only account 2 has permission to add observer node to consensus node list.

Grant permission to modify system parameter

Console provides 2 commands about system parameter modification:

	Command name
	parameter
	function

	setSystemConfigByKey
	key value
	set system parameter with key and value

	getSystemConfigByKey
	key
	inquire value by key

	Note: currently we support system parameter setting with key tx_count_limit or tx_gas_limit. Permission of setSystemConfigByKey command is controllable, while permission of getSystemConfigByKey command is not.

Log in console with account 1, grant account 2 with permission to modify system parameter.

[group:1]> grantSysConfigManager 0x7fc8335fec9da5f84e60236029bb4a64a469a021
{
 "code":0,
 "msg":"success"
}

[group:1]> listSysConfigManager

| address | enable_num |
| 0x7fc8335fec9da5f84e60236029bb4a64a469a021 | 23 |

Log in console with account 2, modify the value of system parameter tx_count_limit to 2000.

[group:1]> getSystemConfigByKey tx_count_limit
1000

[group:1]> setSystemConfigByKey tx_count_limit 2000
{
 "code":0,
 "msg":"success"
}

[group:1]> getSystemConfigByKey tx_count_limit
2000

Log in console with account 3, modify value of parameter tx_count_limit to 3000.

[group:1]> setSystemConfigByKey tx_count_limit 3000
{
 "code":-50000,
 "msg":"permission denied"
}

[group:1]> getSystemConfigByKey tx_count_limit
2000

Account 3 fails to set parameter due to no permission.

Grant permission to write user table

Account 1 can grant account 3 with permission to write user table t_test.

[group:1]> grantUserTableManager t_test 0xd86572ad4c92d4598852e2f34720a865dd4fc3dd
{
 "code":0,
 "msg":"success"
}
[group:1]> listUserTableManager t_test

| address | enable_num |
| 0xd86572ad4c92d4598852e2f34720a865dd4fc3dd | 6 |

Log in console with account 3, insert a record in user table t_test and inquire the records.

[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 insert "fruit" 1 "apple"

transaction hash:0xc4d261026851c3338f1a64ecd4712e5fc2a028c108363181725f07448b986f7e

Event logs

InsertResult index: 0
count = 1

[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 select "fruit"
[[fruit], [1], [apple]]

Log in console with account 2, update the record inserted by account 3 and inquire the records.

[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 update "fruit" 1 "orange"
{
 "code":-50000,
 "msg":"permission denied"
}
[group:1]> call TableTest.sol 0xfe649f510e0ca41f716e7935caee74db993e9de8 select "fruit"
[[fruit], [1], [apple]]

Account 2 fails to update information for it has no permission to write user table t_test.

	Account 1 revoke permission of account 3 to write user table t_test.

[group:1]> revokeUserTableManager t_test 0xd86572ad4c92d4598852e2f34720a865dd4fc3dd
{
 "code":0,
 "msg":"success"
}

[group:1]> listUserTableManager t_test
Empty set.

Revoked successfully.

	Note: now there is no account with permission to write user table t_test, so it is back to initial status, that is, all accounts have permission to write table. Therefore, account 1 can grant another account, like account 2, with permission to write this table.

 国内镜像和CDN加速攻略

国内镜像和CDN加速攻略

TODO: translate this into english
本节为访问GitHub较慢的用户提供国内镜像下载地址，以及CDN加速访问介绍。

FISCO BCOS源码与二进制程序

源码同步

FISCO BCOS当前所有仓库源码位于https://github.com/FISCO-BCOS/FISCO-BCOS/tree/master-2.0，每个新的版本发布会将代码和入master分支。

为了方便国内用户，我们同样在gitee上提供了镜像仓库https://gitee.com/FISCO-BCOS/FISCO-BCOS/tree/master-2.0，每次新版本发布后，镜像仓库会同步GitHub上官方仓库的更新，如果从GitHub下载失败，请尝试使用gitee镜像仓库。

二进制程序

FISCO BCOS每个新版本发布会在GitHub的tag中提供对应的二进制程序和部署工具，当前所提供的二进制程序包括：

	fisco-bcos.tar.gz ：静态二进制程序，支持CentOS 7 和Ubuntu 16.04以上版本

	fisco-bcos-macOS.tar.gz ：对应macOS系统的二进制程序

	build_chain.sh ：对应版本的开发部署工具，依赖openssl和curl，支持CentOS 7/Ubuntu 16.04以上/macOS 10.15以上版本

用户使用开发部署工具(build_chain)，工具先尝试从GitHub下载所需要的二进制程序，如果下载失败则尝试从官网下载。

用户运维部署工具(generator)的时候，工具默认从GitHub下载所需要的二进制程序，可以通过–cdn参数指定从官网下载。例如./generator --download_fisco ./meta --cdn

FISCO BCOS文档

FISCO BCOS文档使用readthedocs管理，全部开源于https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/，同样提供国内镜像http://docs.fisco-bcos.org。

每个版本发布会为上个版本的文档打Tag，新版本的文档会和入主干分支，文档由于会持续改进，所以是下个版本发布才打上个版本的tag。readthedocs文档支持下载PDF格式，方便用户使用。

FISCO BCOS配套工具

控制台

FISCO BCOS控制台是一个交互式命令行工具，使用Java开发，代码位于https://github.com/FISCO-BCOS/console/tree/master-2.0，国内镜像https://gitee.com/FISCO-BCOS/console/tree/master-2.0/。

控制台每个版本发布会提供编译好的包，用户下载后配置后即可使用，为了下载控制台用户需要获取download_console.sh脚本。此脚本会从GitHub下载最新版本console.tar.gz，如果下载失败则尝试从官网CDN下载。下面的指令从国内镜像获取download_console.sh脚本并执行。

curl -#LO https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/download_console.sh && bash download_console.sh

TASSL

FISCO BCOS国密版本需要使用TASSL生成国密版本的证书，部署工具会自动从GitHub下载，解压后放置于~/.fisco/tassl，如果碰到下载失败，请尝试从https://gitee.com/FISCO-BCOS/LargeFiles/blob/master/tools/tassl.tar.gz下载并解压后，放置于~/.fisco/tassl

账户生成脚本

FISCO BCOS在国密模式下使用sm2曲线和对应签名算法，在非国密场景使用secp256k1曲线和ecdsa签名算法。为方便用户提供了生成脚本，脚本生成私钥并以账户地址命名，支持PEM和PKCS12两种格式。详情请参考这里https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/manual/account.html

get_account.sh脚本依赖于openssl指令，用于生成secp256k1私钥，如果从GitHub下载失败，可以尝试镜像地址 https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/get_account.sh

get_gm_account.sh脚本用于生成sm2私钥，依赖于TASSL。如果从GitHub下载失败，可以尝试镜像地址 https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/get_gm_account.sh

举例：使用国内镜像建链

本节以搭建2.4.0国密版本为例，使用国内镜像建链，非国密版本的操作类似，参考https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/installation.html

下载开发部署工具

curl -#LO https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.4.0/build_chain.sh

如果下载失败请尝试curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/manual/build_chain.sh

下载二进制程序

开发部署工具（build_chain）会自动下载二进制程序，下载失败自动切换官网CDN，不需要用户关注。用户也可以手动下载二进制程序或编译源码，通过开发部署工具的-e选项指定，此时工具不会再去下载。-e选项参考https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/manual/build_chain.html#e-optional

搭建2.4.0国密FISCO BCOS链

搭建国密版本时，开发部署工具还依赖tassl，工具会自动下载，如果失败请用户参考TASSL手动下载方法，下载解压后放置于~/.fisco/tassl。执行下面的指令，输出All completed即表示执行成功。

bash build_chain.sh -l 127.0.0.1:4 -p 30300,20200,8545 -g -v 2.4.0

举例：使用国内源码镜像编译

本节以CentOS 7 为例，从gitee镜像下载源码并编译，其他操作系统编译流程类似，请参考https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/manual/get_executable.html#id2

安装依赖

sudo yum install -y epel-release
sudo yum install -y openssl-devel openssl cmake3 gcc-c++ git

下载源码

git clone https://gitee.com/FISCO-BCOS/FISCO-BCOS.git -b master-2.0

下载依赖包

FISCO BCOS在编译时会自动下载依赖包，每个依赖包有多个源。如果在编译阶段下载依赖包失败，请根据提示从下面的国内镜像手动下载，放置于FISCO-BCOS/deps/src目录下，再次make

https://gitee.com/FISCO-BCOS/LargeFiles/tree/master/libs

编译源码

cd FISCO-BCOS && mkdir build && cd build
cmake3 ..
make -j2

 Log description

Log description

All group logs of FISCO BCOS are outputted in the log directory to the file log_% YYYY% mm% dd% HH.% MM, and the log format is customized to facilitate users to view the status of each group through the log. Please refer to the log configuration instructions Log configuration instructions

Log format

Each log record format is as follows:

Log format:
log_level|time|[g:group_id][module_name] content

Example log:
info|2019-06-26 16:37:08.253147|[g:3][CONSENSUS][PBFT]^^^^^^^^Report,num=0,sealerIdx=0,hash=a4e10062...,next=1,tx=0,nodeIdx=2

The meaning of each field is as follows:

	log_level: Log level, currently mainly includingtrace, debug, info, warning, error and fatal, Where fatal is output when an extremely serious error occurs

	time: Log output time, accurate to nanoseconds

	group_id: Output log group ID

	module_name: Module keyword, for example, SYNC module keyword is SYNC and consensus module keyword is CONSENSUS

	content: Logging content

Common log description

Consensus packaging block log

Note

	Only the consensus node will periodically output the consensus packaging log (you can use the command tail -f log/* | grep "${group_id}.*++" under the node directory to view the specified group consensus packaging log)

	The packaging log can check whether the consensus node of the specified group is abnormal, abnormal consensus nodes will not output packed logs

The following is an example of a consensus packaging log:

info|2019-06-26 18:00:02.551399|[g:2][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,nodeIdx=3,hash=1f9c2b14...

The meaning of each field in the log is as follows:

	blkNum: Height of packed blocks

	tx: The number of transactions contained in the packed block

	nodeIdx: Index of the current consensus node

	hash: Hash of packed block

Consensus exception log

Network jitter, network disconnection, or configuration errors (like the inconsistency of a group’s genesis block files) may all cause abnormal node consensus, The PBFT consensus node will output the ViewChangeWarning log, the example is as follows:

warning|2019-06-26 18:00:06.154102|[g:1][CONSENSUS][PBFT]ViewChangeWarning: not caused by omit empty block ,v=5,toV=6,curNum=715,hash=ed6e856d...,nodeIdx=3,myNode=e39000ea...

The meaning of each field of the log is as follows:

	v: PBFT consensus view of current node

	toV: The view the current node is trying to switch to

	curNum: The highest block height of the node

	hash: Node highest block hash

	nodeIdx: Current consensus node request

	myNode: Node ID of the current node

Block Commit Log

If the block consensus is successful or the node is synchronizing blocks from other nodes, the log will be output.

Note

Send a transaction to the node, if the transaction is processed, the non-free node will output the log (n the node directory, you can use the command tail -f log/* | grep "${group_id}.*Report" to check the status of the node block), If the log is not output, it indicates that the node is in an abnormal state. Please check whether the network connection is normal and the node certificate is valid.

The following is the block commit log:

info|2019-06-26 18:00:07.802027|[g:1][CONSENSUS][PBFT]^^^^^^^^Report,num=716,sealerIdx=2,hash=dfd75e06...,next=717,tx=8,nodeIdx=3

The description of each field in the log is as follows:

	num: Committed block height

	sealerIdx: The consensus node index that packages the block

	hash: Committed block hash

	next: Next block height

	tx: Number of transactions included in the block

	nodeIdx: Current consensus node index

Network connection log

Note

n the node directory, you can check the network status by using the command tail -f log/* | grep "connected count", If the number of network connections output by the log does not meet expectations, please check the node connection through the netstat -anp | grep fisco-bcos command

Examples of logs are as follows:

info|2019-06-26 18:00:01.343480|[P2P][Service] heartBeat,connected count=3

The meaning of each field in the log is as follows:

	connected count: Number of nodes that establish a P2P network connection with the current node

Log module keywords

The core module keywords in the FISCO BCOS log are as follows:

	Module
	Module keywords

	Blockchain initialization module
	INITIALIZER

	Network basic module
	NETWORK

	P2P network module
	P2P

	ChannelRPC module
	CHANNEL

	RPC module
	RPC

	Ledger module
	LEDGER

	Consensus block packaging module
	CONSENSUS, SEALER

	PBFT consensus processing module
	CONSENSUS, PBFT

	RAFT consensus processing module
	CONSENSUS, RAFTENGINE

	Block/transaction sync module
	SYNC

	Transaction pool
	TXPOOL

	Blockchain module
	BLOCKCHAIN

	Block verify module
	BLOCKVERIFIER

	DAG module
	DAG

	executive context
	EXECUTIVECONTEXT

	Precompile contract
	PRECOMPILED

	Storage middleware module
	STORAGE

	External Storage engine
	SQLConnectionPool

	MySQL Storage engine
	ZdbStorage

 Application Development

Application Development

 Manage blockchain accounts

Manage blockchain accounts

FISCO BCOS uses accounts to identify each individual user. In a blockchain system each account corresponds to a pair of public and private keys. The account named by the address string calculated by the secure one-way algorithm such as sha256 hash, that is account address. For distinguishing from the address of smart contract, the account address is often referred to as the external account address. The private key only known by the user corresponds to the password in the traditional authentication model. Users need to prove that they own the private key of the corresponding account through a secure cryptographic protocol for claiming their ownership of the account, and performing some sensitive account operations.

Important

In the previous tutorials, for simplifying the operation, we operate with the account provided by the tool by default. However, in actual application deployment, users need to create their own accounts and properly save the account private key to avoid serious security problems such as account private key leakage.

In this article, we will specifically introduce the creation, storage and use of accounts. Readers are required to have a basic knowledge of Linux.

FISCO BCOS provides the get_account script to create accounts, as well as Java SDK and console to store account private keys. Users can choose to store the account private key as a file in PEM or PKCS12 format according to their needs. The PEM format uses a plaintext storage private key, and the PKCS 12 encrypts and stores the private key using a user-provided password.

Create your account

Use script to create account

The usage of get_gm_account.sh is the same as get_account.sh.

1. get script

curl -#LO https://raw.githubusercontent.com/FISCO-BCOS/console/master-2.0/tools/get_account.sh && chmod u+x get_account.sh && bash get_account.sh -h

Note

	If the get_account.sh script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/get_account.sh && chmod u+x get_account.sh && bash get_account.sh -h

	Please use curl -#LO https://osp-1257653870.cos.ap-guangzhou.myqcloud.com/FISCO-BCOS/FISCO-BCOS/tools/tassl-1.0.2/tassl.tar.gz, and place in ~/.fisco/tassl

If you use guomi version fisco, please execute below command to get get_gm_account.sh

curl -#LO https://raw.githubusercontent.com/FISCO-BCOS/console/master-2.0/tools/get_gm_account.sh && chmod u+x get_gm_account.sh && bash get_gm_account.sh -h

Note

	If the get_gm_account.sh script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/get_gm_account.sh && chmod u+x get_gm_account.sh && bash get_gm_account.sh -h

execute the above command and if you see the following output, you are downloading the correct script, otherwise please try again.

Usage: ./get_account.sh
 default generate account and store private key in PEM format file
 -p generate account and store private key in PKCS12 format file
 -k [FILE] calculate the address of PEM format [FILE]
 -P [FILE] calculate the address of PKCS12 format [FILE]
 -h Help

2. Generate private key in PEM format

	generate private key and address

bash get_account.sh

Execute the above command to get output similar to the following. It includes the account address and the private key PEM file with the account address as the file name.

[INFO] Account Address : 0xee5fffba2da55a763198e361c7dd627795906ead
[INFO] Private Key (pem) : accounts/0xee5fffba2da55a763198e361c7dd627795906ead.pem

	Specify the calculation account address of PEM format

bash get_account.sh -k accounts/0xee5fffba2da55a763198e361c7dd627795906ead.pem

Execute the above command. The result is as follows

[INFO] Account Address : 0xee5fffba2da55a763198e361c7dd627795906ead

3. Use script to generate PKCS12 format private key

	generate private key and address

bash get_account.sh -p

Execute the above command to get output similar to the following. You can follow the prompts to enter the password and generate the corresponding p12 file.

Enter Export Password:
Verifying - Enter Export Password:
[INFO] Account Address : 0x02f1b23310ac8e28cb6084763d16b25a2cc7f5e1
[INFO] Private Key (p12) : accounts/0x02f1b23310ac8e28cb6084763d16b25a2cc7f5e1.p12

	Specify the calculation account address of p12 private key. Enter the p12 file password as prompted

bash get_account.sh -P accounts/0x02f1b23310ac8e28cb6084763d16b25a2cc7f5e1.p12

Execute the above command. The result is as follows

Enter Import Password:
MAC verified OK
[INFO] Account Address : 0x02f1b23310ac8e28cb6084763d16b25a2cc7f5e1

Calling Java SDK to create an account

//create normal account
EncryptType.encryptType = 0;
//create national cryptography account, which uses for sending transaction to national blockchain node
// EncryptType.encryptType = 1;
Credentials credentials = GenCredential.create();
//account address
String address = credentials.getAddress();
//account private key
String privateKey = credentials.getEcKeyPair().getPrivateKey().toString(16);
//account public key
String publicKey = credentials.getEcKeyPair().getPublicKey().toString(16);

For more details on the operation, to see Creating and Using a Specified External Account.

Store your account credential

	Java SDK supports loading via private key string or file, so the private key of the account can be stored in the database or in a local file.

	Local files support two storage formats, which are PKCS12 encrypted storage and PEM plaintext storage.

	When developing a service, you can select the storage management of private key according to the actual business scenario.

Load your account credential

Console loads private key file

The console provides the account generation script get_account.sh. The generated account file is in the accounts directory, and the account file loaded by console must be placed in this directory.

The console startup methods are as follows:

./start.sh
./start.sh groupID
./start.sh groupID -pem pemName
./start.sh groupID -p12 p12Name

Default startup

Console randomly generates an account, startup with the group number specified in console configuration file.

./start.sh

Specify group number to startup

Console randomly generates an account, startup with the group number specified on the command line.

./start.sh 2

	Note: The specified group needs to configure bean in console configuration file.

Use PEM private key file to startup

	Startup with the account of the specified pem file. Enter the parameters: group number, -pem, and pem file path

./start.sh 1 -pem accounts/0xebb824a1122e587b17701ed2e512d8638dfb9c88.pem

Use PKCS12 private key file to startup

	Startup with the account of the specified p12 file. Enter the parameters: group number, -p12, and p12 file path

./start.sh 1 -p12 accounts/0x5ef4df1b156bc9f077ee992a283c2dbb0bf045c0.p12
Enter Export Password:

Java SDK loads private file

If the account private key file in PEM or PKCS12 format is generated by the account generation script get_accounts.sh, the account can be used by loading the PEM or PKCS12 account private key file. There are two classes of private keys to be loaded: P12Manager and PEMManager. P12Manager is used to load the private key file in PKCS12 format. PEMManager is used to load the private key file in PEM format.

	P12Manager usage example:
Load p12 key.

// init BcosSDK
BcosSDK sdk = BcosSDK.build(configFile);
// get Client
Client client = sdk.getClient(Integer.valueOf(1));
// get CryptoSuite
CryptoSuite cryptoSuite = client.getCryptoSuite();
// load p12 key
cryptoSuite.loadAccount("p12", p12AccountFilePath, password);

	PEMManager usage example:

Load key.

// init BcosSDK
BcosSDK sdk = BcosSDK.build(configFile);
// get Client
Client client = sdk.getClient(Integer.valueOf(1));
// get CryptoSuite
CryptoSuite cryptoSuite = client.getCryptoSuite();
// load pem key
cryptoSuite.loadAccount("pem", pemAccountFilePath, null);

Account address calculation

The account address of FISCO BCOS is calculated by the ECDSA public key. The hexadecimal of ECDSA public key represents the calculation of keccak-256sum hash, and the hexadecimal of the last 20 bytes of the calculation result is taken as the account address. Each byte requires two hexadecimal to represent, so the length of account address is 40. FISCO BCOS’s account address is compatible with Ethereum.

Note: keccak-256sum is different from SHA3. For details to refer to here [https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use].

Ethernet Address Generation [https://kobl.one/blog/create-full-ethereum-keypair-and-address/]

1. generate ECDSA private key

First, we use OpenSSL to generate an elliptic curve private key. The parameters of the elliptic curve are secp256k1. To run the following command to generate a private key in PEM format and save it in the ecprivkey.pem file.

openssl ecparam -name secp256k1 -genkey -noout -out ecprivkey.pem

Execute the following instructions to view the contents of the file.

cat ecprivkey.pem

You can see output similar to the following

-----BEGIN EC PRIVATE KEY-----
MHQCAQEEINHaCmLhw9S9+vD0IOSUd9IhHO9bBVJXTbbBeTyFNvesoAcGBSuBBAAK
oUQDQgAEjSUbQAZn4tzHnsbeahQ2J0AeMu0iNOxpdpyPo3j9Diq3qdljrv07wvjx
zOzLpUNRcJCC5hnU500MD+4+Zxc8zQ==
-----END EC PRIVATE KEY-----

Next, to calculate the public key based on the private key. To execute the following command.

openssl ec -in ecprivkey.pem -text -noout 2>/dev/null| sed -n '7,11p' | tr -d ": \n" | awk '{print substr($0,3);}'

You can get output similar to the following

8d251b400667e2dcc79ec6de6a143627401e32ed2234ec69769c8fa378fd0e2ab7a9d963aefd3bc2f8f1cceccba54351709082e619d4e74d0c0fee3e67173ccd

2. Calculate the address based on the public key

In this section, we calculate the corresponding account address based on the public key. The keccak-256sum tool we need to get is available for download from here [https://github.com/vkobel/ethereum-generate-wallet/tree/master/lib].

openssl ec -in ecprivkey.pem -text -noout 2>/dev/null| sed -n '7,11p' | tr -d ": \n" | awk '{print substr($0,3);}' | ./keccak-256sum -x -l | tr -d ' -' | tail -c 41

Get the output similar to the following, which is the calculated account address.

dcc703c0e500b653ca82273b7bfad8045d85a470

 Smart contract development

Smart contract development

FISCO BCOS platform currently supports two smart contract forms which are Solidity and pre-compiled.

	The Solidity contract is the same as Ethereum.

	The KVTable contract get/set interfacr and Table contract CRUD interface supporting the distributed storage pre-compilation contract in the Solidity contract, which can store the data of Solidtiy contract in the AMDB table structure, realizes the separation of contract logic and data.

	The precompiled (precompiled) contract is developed in C++ and built into the FISCO BCOS platform. It has better performance than the Solidity contract. Its contract interface that needs to be pre-determined when compiling, is suitable for the scenarios with fixed logic but consensus, such as group configuration. The development of precompiled contracts will be introduced in the next section.

Solidity contract development [https://solidity.readthedocs.io/en/latest/]

	Solidity official file [https://solidity.readthedocs.io/en/latest/]

	Remix online IDE [https://remix.ethereum.org/]

Use KVTable contract get/set interface

Note

	To make the table created by AMDB accessible to multiple contracts, it should have a unique name that acknowledged globally. So it is unable to create tables with same name within one group on the same chain

	KVTable added in v2.3.0, the version of chain >= v2.3.0 can use this function.

KVTable contract use key/value type to get/set data of table, code is as follows:

pragma solidity ^0.4.24;

contract KVTableFactory {
 function openTable(string) public view returns (KVTable);
 function createTable(string, string, string) public returns (int256);
}

//one record
contract Entry {
 function getInt(string) public constant returns (int256);
 function getUInt(string) public constant returns (uint256);
 function getAddress(string) public constant returns (address);
 function getBytes64(string) public constant returns (bytes1[64]);
 function getBytes32(string) public constant returns (bytes32);
 function getString(string) public constant returns (string);

 function set(string, int256) public;
 function set(string, uint256) public;
 function set(string, string) public;
 function set(string, address) public;
}

//KVTable per permiary key has only one Entry
contract KVTable {
 function get(string) public view returns (bool, Entry);
 function set(string, Entry) public returns (int256);
 function newEntry() public view returns (Entry);
}

Offer a use case of KVTableTest.sol，code is as follows:

pragma solidity ^0.4.24;
import "./Table.sol";

contract KVTableTest {
 event SetResult(int256 count);

 KVTableFactory tableFactory;
 string constant TABLE_NAME = "t_kvtest";

 constructor() public {
 //The fixed address is 0x1010 for KVTableFactory
 tableFactory = KVTableFactory(0x1010);
 // the parameters of createTable are tableName,keyField,"vlaueFiled1,vlaueFiled2,vlaueFiled3,..."
 tableFactory.createTable(TABLE_NAME, "id", "item_price,item_name");
 }

 //get record
 function get(string id) public view returns (bool, int256, string) {
 KVTable table = tableFactory.openTable(TABLE_NAME);
 bool ok = false;
 Entry entry;
 (ok, entry) = table.get(id);
 int256 item_price;
 string memory item_name;
 if (ok) {
 item_price = entry.getInt("item_price");
 item_name = entry.getString("item_name");
 }
 return (ok, item_price, item_name);
 }

 //set record
 function set(string id, int256 item_price, string item_name)
 public
 returns (int256)
 {
 KVTable table = tableFactory.openTable(TABLE_NAME);
 Entry entry = table.newEntry();
 // the length of entry's field value should < 16MB
 entry.set("id", id);
 entry.set("item_price", item_price);
 entry.set("item_name", item_name);
 // the first parameter length of set should <= 255B
 int256 count = table.set(id, entry);
 emit SetResult(count);
 return count;
 }
}

KVTableTest.sol calls KVTable contract to create a user table t_kvtest. The table structure of t_kvtestis as follows. This table records the materials in a company’s warehouse, takes the unique material id as the key, and saves the name and price of the materials.

	id*
	item_name
	item_price

	100010001001
	Laptop
	6000

To use Table contract CRUD interface

Accessing AMDB requires using the AMDB-specific smart contract interface Table.sol which is a database contract that can create tables and add, delete, and modify the tables.

Note

To make the table created by AMDB accessible to multiple contracts, it should have a unique name that acknowledged globally. So it is unable to create tables with same name within one group on the same chain.
The CRUD interface of Table contract can have multiple records under a key. When it is used, it will perform batch data operations, including batch writing and range query. For this feature, it is recommended to use MySQL as the back-end database.
When using the get/set interface of KVTable, it is recommended to use rocksdb as the back-end database. Because rocksdb is a non relational database stored in key value, the single key operation efficiency is higher when using KVTable interface.

Table.sol file code is as follows:

pragma solidity ^0.4.24;

contract TableFactory {
 function openTable(string) public constant returns (Table); // open table
 function createTable(string,string,string) public returns(int); // create table
}

// inquiry conditions
contract Condition {
 //equal to
 function EQ(string, int) public;
 function EQ(string, string) public;

 //unequal to
 function NE(string, int) public;
 function NE(string, string) public;

 //greater than
 function GT(string, int) public;
 //greater than or equal to
 function GE(string, int) public;

 //smaller than
 function LT(string, int) public;
 //smaller than or equal to
 function LE(string, int) public;

 //limit the number of return record
 function limit(int) public;
 function limit(int, int) public;
}

// single entry data record
contract Entry {
 function getInt(string) public constant returns(int);
 function getAddress(string) public constant returns(address);
 function getBytes64(string) public constant returns(byte[64]);
 function getBytes32(string) public constant returns(bytes32);
 function getString(string) public constant returns(string);

 function set(string, int) public;
 function set(string, string) public;
 function set(string, address) public;
}

// data record set
contract Entries {
 function get(int) public constant returns(Entry);
 function size() public constant returns(int);
}

// Table main type
contract Table {
 // select interface
 function select(string, Condition) public constant returns(Entries);
 // insert interface
 function insert(string, Entry) public returns(int);
 // update interface
 function update(string, Entry, Condition) public returns(int);
 // remove interface
 function remove(string, Condition) public returns(int);

 function newEntry() public constant returns(Entry);
 function newCondition() public constant returns(Condition);
}

Note

	The type of key in insert, remove, update and select functions of Table contract is string, and the maximum length is 255 characters

	The key type of the get/set interface of the Entry is string, with the maximum length of 255 characters. The types supported by value are int256 (int), address and string, of which string cannot exceed 16MB.

To provide a contract case TableTest.sol. The code is as follows:

pragma solidity >=0.6.10 <0.8.20;
pragma experimental ABIEncoderV2;

import "./Table.sol";

contract TableTest {
 event CreateResult(int256 count);
 event InsertResult(int256 count);
 event UpdateResult(int256 count);
 event RemoveResult(int256 count);

 TableFactory tableFactory;
 string constant TABLE_NAME = "t_test";
 constructor() public {
 tableFactory = TableFactory(0x1001); //The fixed address is 0x1001 for TableFactory
 // the parameters of createTable are tableName,keyField,"vlaueFiled1,vlaueFiled2,vlaueFiled3,..."
 tableFactory.createTable(TABLE_NAME, "name", "item_id,item_name");
 }

 //select records
 function select(string memory name)
 public
 view
 returns (string[] memory, int256[] memory, string[] memory)
 {
 Table table = tableFactory.openTable(TABLE_NAME);

 Condition condition = table.newCondition();

 Entries entries = table.select(name, condition);
 string[] memory user_name_bytes_list = new string[](
 uint256(entries.size())
);
 int256[] memory item_id_list = new int256[](uint256(entries.size()));
 string[] memory item_name_bytes_list = new string[](
 uint256(entries.size())
);

 for (int256 i = 0; i < entries.size(); ++i) {
 Entry entry = entries.get(i);

 user_name_bytes_list[uint256(i)] = entry.getString("name");
 item_id_list[uint256(i)] = entry.getInt("item_id");
 item_name_bytes_list[uint256(i)] = entry.getString("item_name");
 }

 return (user_name_bytes_list, item_id_list, item_name_bytes_list);
 }
 //insert records
 function insert(string memory name, int256 item_id, string memory item_name)
 public
 returns (int256)
 {
 Table table = tableFactory.openTable(TABLE_NAME);

 Entry entry = table.newEntry();
 entry.set("name", name);
 entry.set("item_id", item_id);
 entry.set("item_name", item_name);

 int256 count = table.insert(name, entry);
 emit InsertResult(count);

 return count;
 }
 //update records
 function update(string memory name, int256 item_id, string memory item_name)
 public
 returns (int256)
 {
 Table table = tableFactory.openTable(TABLE_NAME);

 Entry entry = table.newEntry();
 entry.set("item_name", item_name);

 Condition condition = table.newCondition();
 condition.EQ("name", name);
 condition.EQ("item_id", item_id);

 int256 count = table.update(name, entry, condition);
 emit UpdateResult(count);

 return count;
 }
 //remove records
 function remove(string memory name, int256 item_id) public returns (int256) {
 Table table = tableFactory.openTable(TABLE_NAME);

 Condition condition = table.newCondition();
 condition.EQ("name", name);
 condition.EQ("item_id", item_id);

 int256 count = table.remove(name, condition);
 emit RemoveResult(count);

 return count;
 }
}

TableTest.sol has called the intelligent contract Table.sol of AMDB, which implements creating the user table t_test and the functions of adding, deleting and changing t_test. The t_test table is structured as follows. This table records the item and item’s numbers used by a employees.

	name*
	item_name
	item_id

	Bob
	Laptop
	100010001001

The client requiring to call the contract code which is converted to Java file, needs to put TableTest.sol and Table.sol into the directory contracts/solidity, and TableTest.java is generated by the compile script of sol2java.sh.

Precompiled contract development

1. Introduction

Precompiled contract is a natively supported feature of Ethereum: a contract that uses C++ code to implement specific functions at the underlying platform for EVM module calling. FISCO BCOS inherits and extends this feature, and has developed a powerful and easy-to-expand framework on this basis of it.precompiled design principle.

This article is an introductory to guide users on how to implement their own precompiled contracts and how to call them.

2. Implement precompiled contracts

2.1 Process

The process of implementing a pre-compiled contract:

	assign contract address

For calling a solid contract or pre-compiled contract, you need to distinguish it by the contract address and address space.

	address use
	address range

	ethereum precompiled
	0x0001-0x0008

	reserve
	0x0008-0x0fff

	FISCO BCOS precompiled
	0x1000-0x1006

	FISCO BCOS reserve
	0x1007-0x5000

	user assigned interval
	0x5001 - 0xffff

	CRUD reserve
	0x10000+

	solidity
	others

The address range of user assigned interval is 0x5001-0xffff. Users needs to assign an unused address to the new precompiled contract. The precompiled contract addresses must be unique and not conflicting.

List of precompiled contracts and address assignments implemented in FISCO BCOS:

	address
	feature
	source code (libprecompiled directory)

	0x1000
	system parameter management
	SystemConfigPrecompiled.cpp

	0x1001
	table factory contract
	TableFactoryPrecompiled.cpp

	0x1002
	CRUD operation implementation
	CRUDPrecompiled.cpp

	0x1003
	consensus node management
	ConsensusPrecompiled.cpp

	0x1004
	CNS feature
	CNSPrecompiled.cpp

	0x1005
	storage table authority management
	AuthorityPrecompiled.cpp

	0x1006
	parallel contract configuration
	ParallelConfigPrecompiled.cpp

	define contract interface

It is similar to solidity contract. When designing a contract, you need to determine the ABI interface of the contract first. The ABI interface rules of the precompiled contract are exactly the same as the solidity. solidity ABI link [https://solidity.readthedocs.io/en/latest/abi-spec.html].

When defining a precompiled contract interface, you usually need to define a solidity contract with the same interface, and empty the function body of all interfaces. This contract is called interface contract of the precompiled contract. The interface contract need to be used when calling the precompiled contract.

 pragma solidity ^0.4.24;
 contract Contract_Name {
 function interface0(parameters ...) {}

 function interfaceN(parameters ...) {}
 }

	design storage structure

When a precompiled contract involves a storage operation, it needs to determine the stored table information (table name and table structure. The stored data will be uniformly abstracted into a table structure in FISCO BCOS)storage structure.

Note

This process can be omitted without involving a storage operation.

	implement contract logic

For implementing the calling logic of the new contract, you need to implement a new C++ class that needs to inherit [precompiled] (https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master-2.0/libprecompiled/Precompiled.h) #L37) to overload the call function for achieving the calling behaviour of each interface.

 // libprecompiled/Precompiled.h
 class Precompiled
 {
 virtual bytes call(std::shared_ptr<ExecutiveContext> _context, bytesConstRef _param,
 Address const& _origin = Address()) = 0;
 };

The call function has three parameters:

std::shared_ptr<ExecutiveContext> _context : the context for the transaction execution saving

bytesConstRef _param : calling the parameter information of the contract. The calling corresponding contract interface and the parameters of interface can be obtained from _param parsing.

Address const& _origin : transaction sender for permission control

How to implement a Precompiled class will be detailed in the sample below.

	register contract

Finally, the contract address and the corresponding class need to be registered to the execution context of the contract, so that the execution logic of the contract can be correctly recognized when the precompiled contract is called by the address. To view the registered pre-compiled contract list [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master-2.0/libblockverifier/ExecutiveContextFactory.cpp#L36].

Registration path:

 file libblockverifier/ExecutiveContextFactory.cpp
 function initExecutiveContext

2.2 sample contract development

// HelloWorld.sol
pragma solidity ^0.4.24;

contract HelloWorld{
 string name;

 function HelloWorld(){
 name = "Hello, World!";
 }

 function get()constant returns(string){
 return name;
 }

 function set(string n){
 	name = n;
 }
}

The above source code is the HelloWorld contract written by solidity. This chapter will implement a precompiled contract with the same function to enable user step by step to have an visual understanding to the precompiled contract.
sample c++source code path [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master-2.0/libprecompiled/extension/HelloWorldPrecompiled.cpp]:

 libprecompiled/extension/HelloWorldPrecompiled.h
 libprecompiled/extension/HelloWorldPrecompiled.cpp

2.2.1 assign contract address

Referring to the address range, the address of the HelloWorld precompiled contract is assigned as:

0x5001

2.2.2 define contract interface

We need to implement the HelloWorld contract function. The interface is the same as the HelloWorld interface. HelloWorldPrecompiled interface contract:

pragma solidity ^0.4.24;

contract HelloWorldPrecompiled {
 function get() public constant returns(string) {}
 function set(string _m) {}
}

2.2.3 design storage structure

HelloWorldPrecompiled needs to store the string value of the set, so when it comes to storage operations, you need to design the stored table structure.

table name: _ext_hello_world_

table structure:

	key
	value

	hello_key
	hello_value

The table stores only a pair of key-value pairs. The key field is hello_key and the value field is hello_value. For storing the corresponding string value, it can be modified by the set(string) interface and obtained by the get() interface.

2.2.4 implement call logic

To add the HelloWorldPrecompiled class, overload the call function, and implement the calling behavior of all interfaces.call function source code [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master-2.0/libprecompiled/extension/HelloWorldPrecompiled.cpp#L66].

The user-defined Precompiled contract needs to add a new class for defining the calling behaviour of the contract in the class. In the example, for adding the HelloWorldPrecompiled class, the following work must complete:

	interface registration

// define all interfaces in the class
const char* const HELLO_WORLD_METHOD_GET = "get()";
const char* const HELLO_WORLD_METHOD_SET = "set(string)";

// register interface in the constructor
HelloWorldPrecompiled::HelloWorldPrecompiled()
{
 // name2Selector is a member of the Base class Precompiled, which saves the mapping relationship of the interface call.
 name2Selector[HELLO_WORLD_METHOD_GET] = getFuncSelector(HELLO_WORLD_METHOD_GET);
 name2Selector[HELLO_WORLD_METHOD_SET] = getFuncSelector(HELLO_WORLD_METHOD_SET);
}

	table creation

define the table’s name and field structure

// define the name
const std::string HELLO_WORLD_TABLE_NAME = "_ext_hello_world_";
// define the key field
const std::string HELLOWORLD_KEY_FIELD = "key";
// "field0,field1,field2" define other fields, multiple fields separated by commas, such as "field0,field1,field2"
const std::string HELLOWORLD_VALUE_FIELD = "value";

// In the call function, the table is opened when it exists, otherwise the table is created first.
Table::Ptr table = openTable(_context, HELLO_WORLD_TABLE_NAME);
if (!table)
{
 // table is created while it does not exist
 table = createTable(_context, HELLO_WORLD_TABLE_NAME, HELLOWORLD_KEY_FIELD,
 HELLOWORLD_VALUE_FIELD, _origin);
 if (!table)
 {
 // fail to create and return false
 }
}

After getting the operation handle of the table, user can implement the specific logic of the table operation.

	call interface distinguishing

Parsing _param with getParamFunc can distinguish the call interface.

Note: the contract interface must be registered in the constructor

uint32_t func = getParamFunc(_param);
if (func == name2Selector[HELLO_WORLD_METHOD_GET])
{
 // get() call interface logic
}
else if (func == name2Selector[HELLO_WORLD_METHOD_SET])
{
 // set(string) call interface logic
}
else
{
 // unknown interface, call error, return error
}

	Parameter parsing and result return

The parameters during calling the contract are included in the _param parameter of the call function. They are encoded according to the Solidity ABI format. The dev::eth::ContractABI utility class can be used to parse the parameters. Similarly, when the interface returns, the return value also needs to be encoded according to the format. Solidity ABI [https://solidity.readthedocs.io/en/latest/abi-spec.html]。

In dev::eth::ContractABI class, we need to use two interfaces abiIn abiOut. The former serializes the former user parameter and the latter can parse the parameter from the serialized data.

// to serialize ABI data. c++ type data serialized to the format used by evm
// _id: The corresponding string of the function interface declaration, which generally default to ""
template <class... T> bytes abiIn(std::string _id, T const&... _t)
// to parse serialized data into c++ type data
template <class... T> void abiOut(bytesConstRef _data, T&... _t)

The sample code below shows how the interface works:

// for transfer interface: transfer(string,string,uint256)

// Parameter1
std::string str1 = "fromAccount";
// Parameter12
std::string str2 = "toAccount";
// Parameter13
uint256 transferAmoumt = 11111;

dev::eth::ContractABI abi;
// serialization, abiIn first string parameter default to ""
bytes out = abi.abiIn("", str1, str2, transferAmoumt);

std::string strOut1;
std::string strOut2;
uint256 amoumt;

// parse parameter
abi.abiOut(out, strOut1, strOut2, amount);
// parse after
// strOut1 = "fromAccount";
// strOut2 = "toAccount"
// amoumt = 11111

Finally, the HelloWorldPrecompiled call function is implemented completely.source code link [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master-2.0/libprecompiled/extension/HelloWorldPrecompiled.cpp#L66].

bytes HelloWorldPrecompiled::call(dev::blockverifier::ExecutiveContext::Ptr _context,
 bytesConstRef _param, Address const& _origin)
{
 // parse function interface
 uint32_t func = getParamFunc(_param);
 //
 bytesConstRef data = getParamData(_param);
 bytes out;
 dev::eth::ContractABI abi;

 // open table
 Table::Ptr table = openTable(_context, HELLO_WORLD_TABLE_NAME);
 if (!table)
 {
 // table is created while it does not exist
 table = createTable(_context, HELLO_WORLD_TABLE_NAME, HELLOWORLD_KEY_FIELD,
 HELLOWORLD_VALUE_FIELD, _origin);
 if (!table)
 {
 // fail to create table. no authority?
 out = abi.abiIn("", CODE_NO_AUTHORIZED);
 return out;
 }
 }

 // to distinguish the calling interface and specify the calling logic of each interface
 if (func == name2Selector[HELLO_WORLD_METHOD_GET])
 { // get() call interface
 // default to return value
 std::string retValue = "Hello World!";
 auto entries = table->select(HELLOWORLD_KEY_FIELD_NAME, table->newCondition());
 if (0u != entries->size())
 {
 auto entry = entries->get(0);
 retValue = entry->getField(HELLOWORLD_VALUE_FIELD);
 }
 out = abi.abiIn("", retValue);
 }
 else if (func == name2Selector[HELLO_WORLD_METHOD_SET])
 { // set(string) call interface

 std::string strValue;
 abi.abiOut(data, strValue);
 auto entries = table->select(HELLOWORLD_KEY_FIELD_NAME, table->newCondition());
 auto entry = table->newEntry();
 entry->setField(HELLOWORLD_KEY_FIELD, HELLOWORLD_KEY_FIELD_NAME);
 entry->setField(HELLOWORLD_VALUE_FIELD, strValue);

 int count = 0;
 if (0u != entries->size())
 { // value exists, update
 count = table->update(HELLOWORLD_KEY_FIELD_NAME, entry, table->newCondition(),
 std::make_shared<AccessOptions>(_origin));
 }
 else
 { // value does not exist, insert
 count = table->insert(
 HELLOWORLD_KEY_FIELD_NAME, entry, std::make_shared<AccessOptions>(_origin));
 }

 if (count == CODE_NO_AUTHORIZED)
 { // no table operation authority
 PRECOMPILED_LOG(ERROR) << LOG_BADGE("HelloWorldPrecompiled") << LOG_DESC("set")
 << LOG_DESC("non-authorized");
 }
 out = abi.abiIn("", u256(count));
 }
 else
 { // parameter error, unknown calling interface
 PRECOMPILED_LOG(ERROR) << LOG_BADGE("HelloWorldPrecompiled") << LOG_DESC(" unknown func ")
 << LOG_KV("func", func);
 out = abi.abiIn("", u256(CODE_UNKNOW_FUNCTION_CALL));
 }

 return out;
}

2.2.5 Register contract and compile source code

	Register Precompiled contract. Modify FISCO-BCOS/cmake/templates/UserPrecompiled.h.in, register the address of HelloWorldPrecompiled contract in its below function. Default to be existed, and revoke annotation.

void dev::blockverifier::ExecutiveContextFactory::registerUserPrecompiled(dev::blockverifier::ExecutiveContext::Ptr context)
{
 // Address should in [0x5001,0xffff]
 context->setAddress2Precompiled(Address(0x5001), std::make_shared<dev::precompiled::HelloWorldPrecompiled>());
}

	Compile source code. Please read here to install dependencies and compile source code.

Note：The implemented HelloWorldPrecompiled.cpp and header files should be placed under FISCO-BCOS/libprecompiled/extension directory.

	Build FISCO BCOS consortium blockchain
Given that it is stored under FISCO-BCOS/build directory, use the following instruction to build chain for node 4. For more options please read here.

bash ../manual/build_chain.sh -l 127.0.0.1:4 -e bin/fisco-bcos

3 Calling

From the user’s viewing, the pre-compiled contract is basically the same as the solidity contract. The only difference is the solidity contract can obtain the contracted address after deployment while the per-compiled contract can be used directly without deployment because of the pre-compiled contract address is pre-allocated.

3.1 Call HelloWorld precompiled contract using console

Create HelloWorldPrecompiled.sol file under console contracts/solidity with the content of interface declaration:

pragma solidity ^0.4.24;
contract HelloWorldPrecompiled{
 function get() public constant returns(string);
 function set(string n);
}

After the nodes are built by compiled binaries, deploy console v1.0.2 and above version and execute the following statement to call contract:
[image: ../../_images/call_helloworld.png]

3.2 Call solidity

Now, we try to create precompiled contract object and call its interface in Solidity contract. Create HelloWorldHelper.sol file in console contracts/solidity with the following content:

pragma solidity ^0.4.24;
import "./HelloWorldPrecompiled.sol";

contract HelloWorldHelper {
 HelloWorldPrecompiled hello;
 function HelloWorldHelper() {
 // call HelloWorld precompiled contract
 hello = HelloWorldPrecompiled(0x5001);
 }
 function get() public constant returns(string) {
 return hello.get();
 }
 function set(string m) {
 hello.set(m);
 }
}

Deploy HelloWorldHelper contract and call the interface of HelloWorldHelper contract, you will get the following result:
[image: ../../_images/call_helloworldHelper.png]

 Java SDK

Java SDK

Java SDK [https://github.com/FISCO-BCOS/java-sdk/tree/master-2.0] provides the Java API for FISCO BCOS client. You can easily and efficiently build your blockchain applications. The version only supports FISCO BCOS 2.0+.

It includes functions:

	Contract compiling.

	Interacting with FISCO BCOS JSON-RPC interface.

	constructing and sending transactions.

	Advanced Messages Onchain Protocol(AMOP) functions.

	Contract event subscription.

	Encoding and decoding data with ABI.

	Account Management.

 Python SDK

Python SDK

 Go SDK

Go SDK

 AMOP

AMOP

Introduction

Advanced Messages Onchain Protocol (AMOP) aims to provide a secure and efficient message channel for alliance chain. Each agency in the alliance chain can use AMOP to communicate as long as they deploy blockchain nodes, whether they are Sealer or Observer. AMOP has the following advantages:

	Real-time: AMOP messages do not rely on blockchain transactions and consensus. Messages are transmitted in real time among nodes with a milliseconds delay.

	Reliability: When AMOP message is transmitting, it can automatically search all feasible link in blockchain network for communication. As long as at least one link is available, the message is guaranteed to be reachable.

	Efficiency: The AMOP message has simple structure and efficient processing logic. AMOP message’s simple structure and efficient processing logic makes it to fully utilize network bandwidth and require a small amount of CPU usage only.

	Security: All communication links of AMOP use SSL encryption. The encryption algorithm is configurable,and the topic supports identity authentication mechanism.

	Easy to use: No additional configuration is required in SDK when using AMOP.

Logical architecture

[image: ../../_images/AMOP.jpg]
We take the typical IDC architecture of the bank as the example to overview each region:

	SF region: The business service region inside the agency. The business subsystem in this region uses blockchain SDK. the configured SDK connects to the blockchain node.

	Blockchain P2P network: This is a logical region and deployed blockchain nodes of each agency. Blockchain nodes can also be deployed inside the agency.

Configuration

AMOP does not require any additional configuration. The following is a configuration case for [Java SDK]] (./../configuration.md) .
SDK configuration（Spring Bean）：

<?xml version="1.0" encoding="UTF-8" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

<!-- AMOP message processing pool configuration, which can be configured according to actual needs -->
<bean id="pool" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
 <property name="corePoolSize" value="50" />
 <property name="maxPoolSize" value="100" />
 <property name="queueCapacity" value="500" />
 <property name="keepAliveSeconds" value="60" />
 <property name="rejectedExecutionHandler">
 <bean class="java.util.concurrent.ThreadPoolExecutor.AbortPolicy" />
 </property>
</bean>

<!-- group information configuration -->
 <bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.handler.GroupChannelConnectionsConfig">
 <property name="allChannelConnections">
 <list>
 <bean id="group1" class="org.fisco.bcos.channel.handler.ChannelConnections">
 <property name="groupId" value="1" />
 <property name="connectionsStr">
 <list>
 <value>127.0.0.1:20200</value> <!-- format：IP:port -->
 <value>127.0.0.1:20201</value>
 </list>
 </property>
 </bean>
 </list>
 </property>
 </bean>

 <!-- blockchain node information configuration -->
 <bean id="channelService" class="org.fisco.bcos.channel.client.Service" depends-on="groupChannelConnectionsConfig">
 <property name="groupId" value="1" />
 <property name="orgID" value="fisco" />
 <property name="allChannelConnections" ref="groupChannelConnectionsConfig"></property>
 <!-- If you want to enable topic authentication, please uncomment the following configuration. -->
 <!-- <property name="topic2KeyInfo" ref="amopVerifyTopicToKeyInfo"></property>-->
 </bean>

 <!-- If you want to enable topic authentication, please uncomment the following configuration. -->
 <!--
 <bean class="org.fisco.bcos.channel.handler.AMOPVerifyTopicToKeyInfo" id="amopVerifyTopicToKeyInfo">
		<property name="topicToKeyInfo">
			<map>
				<entry key="${topicname}" value-ref="AMOPVerifyKeyInfo_${topicname}" />
			</map>
		</property>
	</bean>
	-->
	
 <!-- If you are a topic producer, you need to configure the publicKey property.
		Each authenticated consumer holds a different public-private key pair.
		Please list the public key files of all the authenticated consumers.
	-->
 <!--
	<bean class="org.fisco.bcos.channel.handler.AMOPVerifyKeyInfo" id="AMOPVerifyKeyInfo_${topicname}">
		<property name="publicKey">
			<list>
				<value>classpath:$consumer_public_key_1.pem$</value>
				<value>classpath:$consumer_public_key_2.pem$</value>
			</list>
		</property>
	</bean>
	-->
	
 <!-- If you are a topic consumer, you need to configure the privateKey property.
		This private key will authenticate you to the corresponding topic producer.
	-->
 <!--
	<bean class="org.fisco.bcos.channel.handler.AMOPVerifyKeyInfo" id="AMOPVerifyKeyInfo_${topicname}">
		<property name="privateKey" value="classpath:$consumer_private_key.pem$"></property>
	</bean>
	-->

SDK uses

AMOP’s messaging is based on the topic mechanism. A topic is set in a server first. When a client sends a message to the topic, the server can receive soon. AMOP supports multiple topic for messaging in the same blockchain network. Topic supports any number of servers and clients. When multiple servers follow on the same topic, the topic messages are randomly sent to one of available servers.

Server code:

package org.fisco.bcos.channel.test.amop;

import org.fisco.bcos.channel.client.Service;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import java.util.HashSet;
import java.util.Set;

public class Channel2Server {
 static Logger logger = LoggerFactory.getLogger(Channel2Server.class);

 public static void main(String[] args) throws Exception {
 if (args.length < 1) {
 System.out.println("Param: topic");
 return;
 }

 String topic = args[0];

 logger.debug("init Server");

 ApplicationContext context = new ClassPathXmlApplicationContext("classpath:applicationContext.xml");
 Service service = context.getBean(Service.class);

 // set topic to support multiple topic
 Set<String> topics = new HashSet<String>();
 topics.add(topic);
 service.setTopics(topics);

 // PushCallback class, is used to handles messages. see the Callback code.
 PushCallback cb = new PushCallback();
 service.setPushCallback(cb);

 System.out.println("3s...");
 Thread.sleep(1000);
 System.out.println("2s...");
 Thread.sleep(1000);
 System.out.println("1s...");
 Thread.sleep(1000);

 System.out.println("start test");
 System.out.println("===");

 // launch service
 service.run();
 }
}

The server’s PushCallback class case:

package org.fisco.bcos.channel.test.amop;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.fisco.bcos.channel.client.ChannelPushCallback;
import org.fisco.bcos.channel.dto.ChannelPush;
import org.fisco.bcos.channel.dto.ChannelResponse;

class PushCallback extends ChannelPushCallback {
 static Logger logger = LoggerFactory.getLogger(PushCallback2.class);

 // onPush method is called when an AMOP message is received.
 @Override
 public void onPush(ChannelPush push) {
 DateTimeFormatter df = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");
 logger.debug("push:" + push.getContent());

 System.out.println(df.format(LocalDateTime.now()) + "server:push:" + push.getContent());

 // respond message
 ChannelResponse response = new ChannelResponse();
 response.setContent("receive request seq:" + String.valueOf(push.getMessageID()));
 response.setErrorCode(0);

 push.sendResponse(response);
 }
}

client case:

package org.fisco.bcos.channel.test.amop;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import org.fisco.bcos.channel.client.Service;
import org.fisco.bcos.channel.dto.ChannelRequest;
import org.fisco.bcos.channel.dto.ChannelResponse;

public class Channel2Client {
 static Logger logger = LoggerFactory.getLogger(Channel2Client.class);

 public static void main(String[] args) throws Exception {
 if(args.length < 2) {
 System.out.println("param: target topic total number of request");
 return;
 }

 String topic = args[0];
 Integer count = Integer.parseInt(args[1]);
 DateTimeFormatter df = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");

 ApplicationContext context = new ClassPathXmlApplicationContext("classpath:applicationContext.xml");

 Service service = context.getBean(Service.class);
 service.run();

 System.out.println("3s ...");
 Thread.sleep(1000);
 System.out.println("2s ...");
 Thread.sleep(1000);
 System.out.println("1s ...");
 Thread.sleep(1000);

 System.out.println("start test");
 System.out.println("===");
 for (Integer i = 0; i < count; ++i) {
 Thread.sleep(2000); // It needs to take time to establish a connection. If you send a message immediately, it will fail.

 ChannelRequest request = new ChannelRequest();
 request.setToTopic(topic); // set the message topic
 request.setMessageID(service.newSeq()); // The message sequence number. When you need to uniquely identify a message, you can use newSeq() to generate randomly.
 request.setTimeout(5000); // Message timeout

 request.setContent("request seq:" + request.getMessageID()); // The message content is sent
 System.out.println(df.format(LocalDateTime.now()) + " request seq:" + String.valueOf(request.getMessageID())
 + ", Content:" + request.getContent());

 ChannelResponse response = service.sendChannelMessage2(request); // send message

 System.out.println(df.format(LocalDateTime.now()) + "response seq:" + String.valueOf(response.getMessageID())
 + ", ErrorCode:" + response.getErrorCode() + ", Content:" + response.getContent());
 }
 }
}

Test

After completing the configuration as described above, user can specify a topic: topic and execute the following two commands for testing.

Unicast text

Launch AMOP server:

java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2Server [topic]

Launch AMOP client:

java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2Client [topic] [Number of messages]

In addition to supporting unicast text, AMOP also supports sending binary data, multicast, and authentication mechanisms. The corresponding test commands are as follows:

Unicast binary，multicast text，multicast binary

Launch AMOP server:

java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2Server [topic]

Launch AMOP client:

#unicast binary
java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2ClientBin [topic] [filename]
#multicast text
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.channel.test.amop.Channel2ClientMulti [topic] [Number of messages]
#multicast binary
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.channel.test.amop.Channel2ClientMultiBin [topic] [filename]

Unicast text and binary,multicast text and binary with authentication mechanisms

Launch AMOP server:

java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2ServerNeedVerify [topic]

启动AMOP客户端：

#Unicast text with authentication mechanisms
java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2ClientNeedVerify [topic] [Number of messages]
#Unicast binary with authentication mechanisms
java -cp 'conf/:apps/*:lib/*' org.fisco.bcos.channel.test.amop.Channel2ClientBinNeedVerify [topic] [filename]
#multicast text with authentication mechanisms
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.channel.test.amop.Channel2ClientMultiNeedVerify [topic] [Number of messages]
#multicast binary with authentication mechanisms
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.channel.test.amop.Channel2ClientMultiBinNeedVerify [topic] [filename]

Error code

	99:message failed to be sent. After AMOP attempts to send message by all the links, the message is not sent to the server. It is recommended to use seq that is generated during the transmission to check the processing status of each node on the link.

	100：message failed to be sent. After AMOP attempts to send message by all the links, the message is not sent to the node from one node by P2P. It is recommended to use seq that is generated during the transmission to check the processing status of each node on the link.

	101：message failed to be sent. After AMOP attempts to send message by all the links, the message is not sent to the sdk from node. It is recommended to use seq that is generated during the transmission to check the processing status of each node on the link.

	102: message times out. It is recommended to check whether the server has processed the message correctly and the bandwidth is sufficient.

	103: Due to the bandwidth limitation of the node, the AMOP request from the SDK to the node was rejected.

 Parallel contract

Parallel contract

FISCO BCOS provides development structure for parallel contract. Contract developed under the structure regulation can be parallelly executed by nodes of FISCO BCOS. The advantages of parallel contract include:

	high TPS: multiple independent transaction being executed at the same time can utilize the CPU resources to the most extent and reach high TPS

	scalable: improve the performance of transaction execution with better configuration of machine to support expansion of applications

The following context will introduce how to compile, deploy and execute FISCO BCOS parallel contract.

Basic knowledge

Parallel exclusion

Whether two transactions can be executed in parallel depends on whether they are mutually exclusive. By exclusive, it means the two transactions have intersection in their contract storage variables collection.

Taking payment transfer as an example, it involves transactions of payment transfer between users. Use transfer(X, Y) to represent the access of user X to user Y. The exclusion is as below.

	transaction
	exclusive object
	intersection
	exclusive or not

	transfer(A, B) and transfer(A, C)
	[A, B] and [A, C]
	[A]
	exclusive, cannot be executed parallelly

	transfer(A, B) and transfer(B, C)
	[A, B] and [B, C]
	[B]
	exclusive, cannot be executed parallelly

	transfer(A, C) and transfer(B, C)
	[A, C] and [B, C]
	[C]
	exclusive, cannot be executed parallelly

	transfer(A, B) and transfer(A, B)
	[A, B] and [A, B]
	[A, B]
	exclusive, cannot be executed parallelly

	transfer(A, B) and transfer(C, D)
	[A, B] and [C, D]
	no
	non-exclusive, can be executed parallelly

Here are detailed definitions:

	exclusive parameter：parameter that is related to “read/write” of contract storage variable in contract interface. Such as the interface of payment transfer transfer(X, Y), in which X and Y are exclusive parameters.

	exclusive object：the exclusive content extracted from exclusive parameters. Such as the payment transfer interface transfer(X, Y). In a transaction that calls the interface, the parameter is transfer(A, B), then the exclusive object is [A, B]; for another transaction that calls parameter transfer(A, C), the exclusive object is [A, C].

To judge whether 2 transactions at the same moment can be executed in parallel depends on whether there is intersection between their exclusive objects. Transaction without intersection can be executed in parallel.

Compile parallel contract

FISCO BCOS provides parallel contract development structure. Developers only need to adhere to its regulation and define the exclusive parameter of each contract interface so as to realize parallelly executed contract. When contract is deployed, FISCO BCOS will auto-analyze exclusive object before the transaction is excuted to make non-dependent transaction execute in parallel as much as possible.

So far, FISCO BCOS offers two types of parallel contract development structure: solidity and Precompiled contract.

Solidity development structure

Parallel solidity contract shares the same development process with regular solidity contract: make ParallelContract [https://github.com/FISCO-BCOS/java-sdk-demo/blob/main-2.0/src/main/java/org/fisco/bcos/sdk/demo/contract/sol/ParallelContract.sol] as the base class of the parallel contract and call registerParallelFunction() to register the interface. （ParallelContract.sol can be found at here [https://github.com/FISCO-BCOS/java-sdk-demo/blob/main-2.0/src/main/java/org/fisco/bcos/sdk/demo/contract/sol/ParallelContract.sol]）

Here is a complete example of how ParallelOk contract realize parallel payment transfer

pragma solidity ^0.4.25;

import "./ParallelContract.sol"; // import ParallelContract.sol

contract ParallelOk is ParallelContract // make ParallelContract as the base class
{
 // contract realization
 mapping (string => uint256) _balance;

 function transfer(string from, string to, uint256 num) public
 {
 // here is a simple example, please use SafeMath instead of "+/-" in real production
 _balance[from] -= num;
 _balance[to] += num;
 }

 function set(string name, uint256 num) public
 {
 _balance[name] = num;
 }

 function balanceOf(string name) public view returns (uint256)
 {
 return _balance[name];
 }

 // register parallel contract interface
 function enableParallel() public
 {
 // function defined character string (no blank space behind ","), the former part of parameter constitutes exclusive parameter (which should be put ahead when designing function)
 registerParallelFunction("transfer(string,string,uint256)", 2); // critical: string string
 registerParallelFunction("set(string,uint256)", 1); // critical: string
 }

 // revoke parallel contract interface
 function disableParallel() public
 {
 unregisterParallelFunction("transfer(string,string,uint256)");
 unregisterParallelFunction("set(string,uint256)");
 }
}

The detail steps are:

（1）make ParallelContract as the base class of contract

pragma solidity ^0.4.25;

import "./ParallelContract.sol"; // import ParallelContract.sol

contract ParallelOk is ParallelContract // make ParallelContract as the base class
{
 // contract realization

 // register parallel contract interface
 function enableParallel() public;

 // revoke parallel contract interface
 function disableParallel() public;
}

（2）Compile parallel contract interface

Public function in contract is the interface of contract. To compile a parallel contract interface is to realize the public function of a contract according to certain rules.

Confirm whether the interface is parallelable

A parallelable contract interface has to meet following conditions:

	no call of external contract

	no call of other function interface

Confirm exclusive parameter

Before compiling interface, please confirm the exclusive parameter of interface. The exclusion of interface is the exclusion of global variables. The confirmation of exclusive parameter has following rules:

	the interface accessed global mapping, the key of mapping is the exclusive parameter

	the interface accessed global arrays, the subscript of a array is the exclusive parameter

	the interface accessed simple type of global variables, all the simple type global variables share one exclusive parameter and use different variable names as the exclusive objects.

For example: If setA(int x)writes globalA, we need to declare it as setA(string aflag, int x) and call it like setA("globalA", 10) by using globalA to declare the exclusive object.

Confirm parameter type and sequence

After the exclusive parameter is confirmed, confirm parameter type and sequence according to following rules:

	interface parameter is limited to: string、address、uint256、int256 (more types coming in the future)

	exclusive parameter should all be contained in interface parameter

	all exclusive should be put in the beginning of the interface parameter

mapping (string => uint256) _balance; // global mapping

// exclusive variable from, to are put at the beginning of transfer()
function transfer(string from, string to, uint256 num) public
{
 _balance[from] -= num; // from is the key of global mapping, the exclusive parameter
 _balance[to] += num; // to is the key of global mapping, the exclusive parameter
}

// the exclusive variable name is put at the beginning of the parameter of set()
function set(string name, uint256 num) public
{
 _balance[name] = num;
}

（3）Register parallelable contract interface

Implement enableParallel() function in contract, call registerParallelFunction() to register parallelable contract interface, and implement disableParallel() function to endow the contract with ability to revoke parallel execution.

// register parallelable contract interface
function enableParallel() public
{
 // function defined character string (no blank space behind ","), the parameter starts with exclusive parameters
 registerParallelFunction("transfer(string,string,uint256)", 2); // transfer interface, the former 2 is exclusive parameter
 registerParallelFunction("set(string,uint256)", 1); // set interface, the first 1 is exclusive parameter
}

// revoke parallel contract interface
function disableParallel() public
{
 unregisterParallelFunction("transfer(string,string,uint256)");
 unregisterParallelFunction("set(string,uint256)");
}

（4）Deploy/execute parallel contract

Please refer to here for the console manual for version 2.6 and above, and here for the console manual for version 1.x. Here we use console as an example.

deploy contract

[group:1]> deploy ParallelOk.sol

call enableParallel() interface to make ParallelOk executed parallelly

[group:1]> call ParallelOk.sol 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744 enableParallel

send parallel transaction set()

[group:1]> call ParallelOk.sol 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744 set "jimmyshi" 100000

send parallel transaction transfer()

[group:1]> call ParallelOk.sol 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744 transfer "jimmyshi" "jinny" 80000

check transaction execution result balanceOf()

[group:1]> call ParallelOk.sol 0x8c17cf316c1063ab6c89df875e96c9f0f5b2f744 balanceOf "jinny"
80000

The following context contains an example to send massive transaction through SDK.

Precompile parallel contract structure

Parallel precompiled contract has the same compilation and development process with regular precompiled contract. Regular precompiled contract uses Precompile as the base class to implement contract logical. Based on this, Precompile base class offers 2 virtual functions for parallel to enable implementation of parallel precompiled contract.

（1）Define the contract as parallel contract

bool isParallelPrecompiled() override { return true; }

（2）Define parallel interface and exclusive parameter

It needs attention that once contract is defined parallelable, all interfaces need to be defined. If an interface is returned with null, it has no exclusive object. Exclusive parameter is related to the implementation of precompiled contract, which needs understanding of FISCO BCOS storage. You can read the codes or consult experienced programmer for implementation details.

// take out exclusive object from parallel interface parameter, return exclusive object
std::vector<std::string> getParallelTag(bytesConstRef param) override
{
 // get the func and data to be called
 uint32_t func = getParamFunc(param);
 bytesConstRef data = getParamData(param);

 std::vector<std::string> results;
 if (func == name2Selector[DAG_TRANSFER_METHOD_TRS_STR2_UINT]) // function is parallel interface
 {
 // interfaces：userTransfer(string,string,uint256)
 // take out exclusive object from data
 std::string fromUser, toUser;
 dev::u256 amount;
 abi.abiOut(data, fromUser, toUser, amount);

 if (!invalidUserName(fromUser) && !invalidUserName(toUser) && (amount > 0))
 {
 // write results to exclusive object
 results.push_back(fromUser);
 results.push_back(toUser);
 }
 }
 else if ... // all interfaces needs to offer exclusive object, returning null means no exclusive object

 	return results; //return exclusion
}

（3）Compile, restart node

To manually compile nodes please check here

After compilation, close node and replace with the original node binaries, and restart node.

Example: parallel payment transfer

Here gives 2 parallel examples of solidity contract and precompiled contract.

Config environment

The execution environment in this case:

	java-sdk-demo client end

	a FISCO BCOS chain

java-sdk-demo is to send parallel transaction, FISCO BCOS chain is to execute parallel transaction. The related configuration are:

	java-sdk-demo configuration

	Chain building

For pressure test on maximum performance, it at least needs:

	3 java-sdk-demo to generate enough transactions

	4 nodes, all java-sdk-demo are configured with all information of nodes on chain to send transaction evenly to each node so that the chain can receive enough transaction

Parallel Solidity contract: ParallelOk

Payment transfer based on account model is a typical operation. ParallelOk contract is an example of account model and is capable of parallel transfer. The ParallelOk contract is given in former context.

FISCO BCOS has built-in ParallelOk contract in java-sdk-demo. Here is the operation method to send massive parallel transactions through java-sdk-demo.

（1）Deploy contract, create new user, activate parallel contract through SDK

java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.sdk.demo.perf.ParallelOkPerf [precompiled] [groupID] [add] [count] [tps] [file]
java -cp conf/:lib/*:apps/* org.fisco.bcos.sdk.demo.perf.ParallelOkPerf precompiled 1 add 10000 2500 user
在group1上创建了 10000个用户，创建操作以2500TPS发送的，生成的用户信息保存在user中

After executed, ParallelOk contract will be deployed to blockchain, the created user information is stored in user file, and the parallel ability of ParallelOk contract is activated.

（2）Send parallel transfer transactions in batch

Note: before send transactions in batch, please adjust the SDK log level to ERROR to ensure capacity.

java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.sdk.demo.perf.ParallelOkPerf [precompiled] [groupID] [transfer] [count] [tps] [file]
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.sdk.demo.perf.ParallelOkPerf precompiled 1 transfer 100000 4000 user
100000 transactions have been sent to group1, the TPS limit is 4000, users are the same in the user file created formerly.

（3）Verify parallel correctness

After parallel transaction is executed, java-sdk-demo will print execution result. TPS is the TPS executed on node in the transaction sent by SDK. validation is the verification of transfer transaction result.

Total transactions: 100000
Total time: 34412ms
TPS: 2905.9630361501804
Avg time cost: 4027ms
Error rate: 0%
Return Error rate: 0%
Time area:
0 < time < 50ms : 0 : 0.0%
50 < time < 100ms : 44 : 0.044000000000000004%
100 < time < 200ms : 2617 : 2.617%
200 < time < 400ms : 6214 : 6.214%
400 < time < 1000ms : 14190 : 14.19%
1000 < time < 2000ms : 9224 : 9.224%
2000 < time : 67711 : 67.711%
validation:
 	user count is 10000
 	verify_success count is 10000
 	verify_failed count is 0

We can see that the TPS of this transaction is 2905. No error (verify_failed count is 0) after execution result is verified.

（4）Count total TPS

Single java-sdk-demo cannot send enough transactions to reach the parallel execution limit of nodes. It needs multiple java-sdk-demos to send transactions at the same time. TPS by simply summing together won’t be correct enough when multiple java-sdk-demos sending transactions, so it should be acquired directly from node.

count TPS from log file using script

cd tools
sh get_tps.sh log/log_2019031821.00.log 21:26:24 21:26:59 # parameters：<log file> <count start time> <count end time>

get TPS（2 SDK, 4 nodes, 8 cores, 16G memory）

statistic_end = 21:26:58.631195
statistic_start = 21:26:24.051715
total transactions = 193332, execute_time = 34580ms, tps = 5590 (tx/s)

Parallel precompiled contract: DagTransferPrecompiled

Same with the function of ParallelOk contract, FISCO BCOS has built-in example of parallel precompiled contract (DagTransferPrecompiled [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master-2.0/libprecompiled/extension/DagTransferPrecompiled.cpp]) and realizes transfer function based on account model. The contract can manage deposits from multiple users and provides a parallel transfer interface for parallel transactions of payment transfer between users.

Note: DagTransferPrecompiled is the example of parallel transaction with simple functions, please don’t use it for online transactions.

（1）Create user

Use java-sdk-demo to send transaction to create user, the user information will be stored in user file. Command parameter is the same with parallelOk, the only difference is that the object called by the command is precompile.

java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.sdk.demo.perf.ParallelOkPerf [precompiled] [groupID] [add] [count] [tps] [file]
java -cp conf/:lib/*:apps/* org.fisco.bcos.sdk.demo.perf.ParallelOkPerf precompiled 1 add 10000 2500 user
在group1上创建了 10000个用户，创建操作以2500TPS发送的，生成的用户信息保存在user中

（2）Send parallel transfer transactions in batch

Send parallel transfer transactions through java-sdk-demo

Note: before sending transactions in batch, please adjust SDK log level to ERROR for enough capability to send transactions.

java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.sdk.demo.perf.ParallelOkPerf [precompiled] [groupID] [transfer] [count] [tps] [file]
java -cp 'conf/:lib/*:apps/*' org.fisco.bcos.sdk.demo.perf.ParallelOkPerf precompiled 1 transfer 100000 4000 user

100000 transactions has been sent to group1, the TPS limit is 4000, users are the same ones in the user file created formerly, 20% exclusion exists between transactions.

（3）Verify parallel correctness

After parallel transactions are executed, java-sdk-demo will print execution result. TPS is the TPS of the transaction sent by SDK on the node. validation is the verification of transfer execution result.

Total transactions: 80000
Total time: 25451ms
TPS: 3143.2949589407094
Avg time cost: 5203ms
Error rate: 0%
Return Error rate: 0%
Time area:
0 < time < 50ms : 0 : 0.0%
50 < time < 100ms : 0 : 0.0%
100 < time < 200ms : 0 : 0.0%
200 < time < 400ms : 0 : 0.0%
400 < time < 1000ms : 403 : 0.50375%
1000 < time < 2000ms : 5274 : 6.592499999999999%
2000 < time : 74323 : 92.90375%
validation:
 	user count is 10000
 	verify_success count is 10000
 	verify_failed count is 0

We can see that in this transaction, the TPS is 3143. No error (verify_failed count is 0) after execution result verification.

（4）Count total TPS

Single java-sdk-demo can send enough transactions to meet the parallel execution limit of node. It needs multiple java-sdk-demo to send tranactions. And by simply summing the TPS of each transaction won’t be correct, so the TPS should be acquired from node directly.

Count TPS from log file using script

cd tools
sh get_tps.sh log/log_2019031311.17.log 11:25 11:30 # parameter：<log file> <count start time> <count end time>

get TPS (3 SDK, 4 nodes, 8 cores, 16G memory)

statistic_end = 11:29:59.587145
statistic_start = 11:25:00.642866
total transactions = 3340000, execute_time = 298945ms, tps = 11172 (tx/s)

Result description

The performance result in the example of this chapter is tested in 3SDK, 4 nodes, 8 cores, 16G memory, 1G network. Each SDK and node are deployed in different VPS with cloud disk. The real TPS depends on the condition of your hardware configuration, operation system and bandwidth.

 Privacy protection

Privacy protection

Privacy protection is a major technical challenge for the alliance chain. In order to protect the data, keep the anonymity of alliance members, and ensure the effectiveness of supervision，FISCO BCOS integrates homomorphic encryption and group/ring signature algorithms in Precompiled Contracts [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/manual/smart_contract.html#id2], providing multiple privacy protection methods.

Note

	FISCO BCOS 2.3.0+ supports homomorphic encryption, group signature and ring signature

	FISCO BCOS 2.3.0, 2.4.0 and 2.4.1, you need to manually compile the binary to enable the privacy protection module

	FISCO BCOS 2.5.0+ enables privacy protection module by default

Homomorphic encryption

Introduction

Homomorphic Encryption is one of the jewels in the field of public key cryptosystems. It has more than 40 years of research history, and its wonderful cryptographic characteristics have attracted wide attention。

	Homomorphic encryption is essentially a public key encryption algorithm, that is, the public key is used for encryption, and the private key is used for decryption.

	Homomorphic encryption allows computation on ciphertexts, generating an encrypted result which, when decrypted, matches the result of the operations as if they had been performed on the plaintext.

	Formula description：

[image: ../../_images/formula.jpg]

FISCO BCOS uses the paillier encryption algorithm which supports addition homomorphism. Paillier key pairs are compatible with mainstream RSA public key encryption algorithms, and the use costs is low. At the same time, paillier, as a lightweight homomorphic encryption algorithm, has low calculation overhead and is easily accepted by business systems. Therefore, after balancing the trade-off between functionality and usability, the paillier algorithm was finally selected.

Components

Components of FISCO BCOS homomorphic encryption module include:

	paillierlibrary [https://github.com/FISCO-BCOS/paillier-lib], provides java version library and c++ version homomorphic interface.

	paillierprecompiled contract, provides homomorphic interface for smart contracts.

Suggestion

For services that require privacy protection, if it needs simple ciphertext calculation, this module can be used to fulfill related demands. All data on the chain can be encrypted by calling the paillier library. The ciphertext data on the chain can be homomorphically added by calling the paillier precompiled contract. After the ciphertext is returned to the application layer, it can be decrypted by calling the paillier library. The specific process is shown in the following figure:

[image: ../../_images/paillier.jpg]

Scenario

In the alliance chain, different business scenarios need to be equipped with different privacy protection policies. For businesses with strong privacy, such as reconciliation between financial institutions, it is necessary to encrypt asset data. In FISCO BCOS, the user can call the homomorphic encryption library to encrypt the data. When the consensus node executes the transaction, the homomorphic encryption precompiled contract is called to obtain the result of the ciphertext calculation.

Group/Ring signature

Introduction

Group signature

Group signature is a digital signature scheme that can protect the identity of the signer. Users can sign messages instead of the group they belong to, and the verifier can verify whether the signature is valid. In this case, the verifier could not know which group member the signature belongs to. However, users cannot abuse this anonymous behavior, because the group administrator can open the signature through the group owner’s private key, exposing the attribution information of the signature. Group signature features include:

	Anonymity: group members use group parameters to generate signatures, others can only verify the validity of the signature, and know the group to which the signer belongs through the signature, but cannot obtain the identity information of the signer;

	Unforgeability: only group members can generate valid and verifiable group signatures;

	Unlinkability: given two signatures, it is impossible to determine whether they are from the same signer;

	Traceability: the group owner can obtain the signer identity through signature.

Ring signature

Ring signature is a special group signature scheme, but has complete anonymity, that is, there is no administrator, users can actively join the ring, and the signature cannot be opened. Ring signature features include:

	Unforgeability: other members in the ring cannot fake the signature of the real signer;

	Full anonymity: there is no administrator, others can only verify the validity of the ring signature, but no one can obtain the identity information of the signer.

Components

Components of FISCO BCOS group/ring signature module include:

	group/ring signaturelibrary [https://github.com/FISCO-BCOS/group-signature-lib], provides c++ version library.

	group/ring signatureprecompiled contracts, provides verify interfaces for smart contracts.

Suggestion

Services that have the need to hide the identity of the signer can use this module to fulfill related demands. The user signs the data by calling the group/ring signature library, and then uploads the signature. The application contracts verifies the signature by calling the group/ring signature precompiled contracts, and returns the verification result back to the application layer. If it is a group signature, the supervisor can also open the specified signature data to obtain the identity of the signer. The specific process is shown in the following figure:

[image: ../../_images/group_sig.jpg]

Scenario

Due to its natural anonymity, group/ring signature has broad application prospects in scenarios where participants’ identities need to be hidden, such as anonymous voting, anonymous auctions, anonymous auctions, etc., and can even be used in the blockchain with UTXO model to achieve anonymous transfers. At the same time, due to the traceability of group signature, it can be used in scenarios that require regulatory intervention. The supervisor acts as the group owner or entrusts the group owner to reveal the identity of the signer.

How to start

Build chain

Make sure you are in the FISCO-BCOS/build directory, and execute the following command to build a local 4-node chain. Refer to here [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/manual/build_chain.html] to get more build options.

bash ../manual/build_chain.sh -l 127.0.0.1:4 -e bin/fisco-bcos

Precompiled contract interface

The code of the privacy module is put together with the precompiled contracts developed by the user, located in the FISCO-BCOS/libprecompiled/extension directory. The calling method of the privacy module is exactly the same as the calling method [https://fisco-bcos-documentation.readthedocs.io/en_US/latest/docs/manual/smart_contract.html#id12] of the precompiled contract developed by the user, but there are two points to note:

	Addresses have been assigned to the precompiled contracts for the privacy module and no additional registration is required. The precompiled contract list and address allocation of the privacy module are as follows:

	Addresses
	Function
	Resource

	0x5003
	Homomorphic encryption
	PaillierPrecompiled.cpp

	0x5004
	Group signature
	GroupSigPrecompiled.cpp

	0x5005
	Ring signature
	RingSigPrecompiled.cpp

	Need to declare the interfaces of the precompiled contracts through the solidity contract. The contract files need to be saved in the console contract directory console/contracts/solidity. The contract interface of each privacy function is as follows:

	Homomorphic encryption

// PaillierPrecompiled.sol
pragma solidity ^0.4.24;
contract PaillierPrecompiled{
 function paillierAdd(string cipher1, string cipher2) public constant returns(string);
}

	Group signature

// GroupSigPrecompiled.sol
pragma solidity ^0.4.24;
contract GroupSigPrecompiled{
		function groupSigVerify(string signature, string message, string gpkInfo, string paramInfo) public constant returns(bool);
}

	Ring signature

// RingSigPrecompiled.sol
pragma solidity ^0.4.24;
contract RingSigPrecompiled{
 function ringSigVerify(string signature, string message, string paramInfo) public constant returns(bool);
}

Called by console

After building the chain by the newly compiled binary, deploy the console (version v1.0.2 or later), and copy the interface declaration files to the console contract directory. Take calling homomorphic encryption as an example:

start the console in the console directory
bash start.sh

call contract
call PaillierPrecompiled 0x5003 paillierAdd "0100E97E06A781DAAE6DBC9C094FC963D73B340D99FD934782A5D629E094D3B051FBBEA26F46BB681EB5314AE98A6A63805834E26BD0154243581DD77709C5DB15357DBEC34F8D8B9D5892FDF5F5FC56B1474CF58D6AC23AA867E34653B469058DCDBDC283D493711022131FBCBCFAC639919A7C0FE45EECDBD43FA543492D3058737F567626318282C2C35027B05E901F45CB3B71479FC49FD08B3F81C82326DEF28739D6A7D090F93D1B5058CDA89134AB103DB49EA51FF14310179FF9B3284BC6C3B6BA3BB0FCB35FEA6AF1453A4AAEB3EB82E9B99875BEA89CD970905B40E6E5FC906F0959769865FF29A83CD23ACC0C832A0DE30D0C691335A7ABE2EA0782778E14DAACACD60767862D5E285E8FB7B6D62C9AABE1BE751DD68001F492D6FD4C46583B25FF1806A954E8DB5ED935C5A2CA6816C4EDB48D4A41D146E09EF1CA5AFECC38F38E4147D9C6D07429F058266CC879AF8AA88510E85608756585C8D78400DFFA32244B99DC1A533780CAEA07578AF340C3C4ABED09355A006FCE99F22BE113F5317256198ACB6CA9D8501EDF42A11CFCCF677755D081E48249B9345FA8C2F73E6CB37CB17C2A5A1EA4DC44949A63E8DA45F3DCE827654688312F399873E897CDD413C84DC0891884BEF8ECBC99F48CBB3DA2D04B40CDCB03A6CD8FDC11277A5AA5F73DB6B828AB24978480604D0143A0A5020EE985A88EEC73FD9DF205E5CD5C54C06ADD092E839B91F28887C9BF7775275552E1B673997A792683B784827078CC7BF7121318B0565739588268372EDD320B1BB2FEE8D873222C00AF93D07C0572BF3E089806EA7E3C8D334973B4BE61E31E389CB919FCEE834E1D9EBA624DE324D85425BCCDF8C3F8F3A94E33A307CAAE5922E46FFE96A521ECB6E7D681E7CF6A1900EEF0DDF23ADEC6EFA8842110FF1F266AEDA7B501DBC94D20817DD43D9EB056E3DA4DA977E85A53207F2C229F9302EB5029B5C31EE40FC7E25591CDC6B4AD206BDFB50C5F7D2DA2D6B8AB7A6B575C20FDD12A37EBECF27D60B651842DED09776218613F72628C1A3540252895A192DF51A1B7479EFC45A4B489FC" "0100E97E06A781DAAE6DBC9C094FC963D73B340D99FD934782A5D629E094D3B051FBBEA26F46BB681EB5314AE98A6A63805834E26BD0154243581DD77709C5DB15357DBEC34F8D8B9D5892FDF5F5FC56B1474CF58D6AC23AA867E34653B469058DCDBDC283D493711022131FBCBCFAC639919A7C0FE45EECDBD43FA543492D3058737F567626318282C2C35027B05E901F45CB3B71479FC49FD08B3F81C82326DEF28739D6A7D090F93D1B5058CDA89134AB103DB49EA51FF14310179FF9B3284BC6C3B6BA3BB0FCB35FEA6AF1453A4AAEB3EB82E9B99875BEA89CD970905B40E6E5FC906F0959769865FF29A83CD23ACC0C832A0DE30D0C691335A7ABE2EA07827736DDD4C285AB8C5F53DA58502BD2E312C939139E591C83D009C763836B05676CEDE46C9BFEBA7AF6242739F1E27A0AABB13F37CFF2DFEE5D14D52A660FDD012748025F9915585123FD263E211C594A0EDB7AFDA1240A2C340C44C3568FA47AB2CC00459DF31828C56CAC0284B5D0D3BC3D6F37969FACED77B03107B88F60A73E1F9FEBE6152FB00BDAECA9954AC28D4D9599FE234AF2E52748DBEB65570F2B99A638C275235494189B887FAEA39FE12CB1BAE9AE085E353D4DC01863052FE141D87D98E78C46FFD0F634D498E4E4B2F87B60D505F8401DCCC1BC0D9E32B8C5AF6A6257DB61DDD166CC17E712626218C16D00C24042D928028972816919C1CD9E1AB2F3135D798BE795D79013C3BDE507811E05D88050E7DF1BD3ED0EB7405BA21E854551A7EBD6351E0B9300428C77B1FA532DB9C5D9A0D4BB9F7E96BAFA259D419D75398141801B148C3EF9AE437A424E4E781238964C10EE39260DD0058392CD83C1DFEDAE2D557E5E7D643608B1BB0327AB92550A66F6D636F9F638A5077D721E6BD9344851E3FE288984F120C05A62DD9E283498B5AD680E91E0CBAD3093598B54E8A6964EB406068BB765945B182CD5EBC8910F2DE80C902751EEB77FCB583784DD852E4B6FF2CC1EBA44A5F750B2AD11240F7B95D87055F3CC5A837FA682117ACA1787CF107C9D4B111C8B9FBB78553452E351A8F0E3C50F536CA3304C"

the result
0100E97E06A781DAAE6DBC9C094FC963D73B340D99FD934782A5D629E094D3B051FBBEA26F46BB681EB5314AE98A6A63805834E26BD0154243581DD77709C5DB15357DBEC34F8D8B9D5892FDF5F5FC56B1474CF58D6AC23AA867E34653B469058DCDBDC283D493711022131FBCBCFAC639919A7C0FE45EECDBD43FA543492D3058737F567626318282C2C35027B05E901F45CB3B71479FC49FD08B3F81C82326DEF28739D6A7D090F93D1B5058CDA89134AB103DB49EA51FF14310179FF9B3284BC6C3B6BA3BB0FCB35FEA6AF1453A4AAEB3EB82E9B99875BEA89CD970905B40E6E5FC906F0959769865FF29A83CD23ACC0C832A0DE30D0C691335A7ABE2EA0782774D011D9A668B26E65506EF2E8B3EBA70B882DE36FEC5951B64B9D967EE5E05B1AF62EE569358360C43220A756E7FB610FCBD5A366D077C48342EE3025735D6590531A7E609ADE2608BB4173167F972AB860674DB89769E2D97EE3E308D3CA04802EF8F85BC6BFCD270F1FC6AEA5C09F51E8914273D8BD7833D55D9AF3D0102315880A57D531E30EDD8E777CDE8708AE7DDF83A8C5B48854FD4CD4E7372CED017C0BACD49E409C45F7071113B12494D3955BA1D7618E196A14012B11ADB63B857C9033604575FC7FF1D5833A53ACDE8877311FFE78F0CAEBAA27B0E5ADCDD809AEDCD5C7D2CA7F15E53AB7D62ADF04686E05B1F79CA91AFD2CE120AAD7D0F15C8E7B59968CE13BA10C99B50BE696C22A59109C3E6E5EDBE364FF5717443C175DEE5680908AEF67AF6261644AEEFAD42538A8686481CF0109296D1A2FF030143A0DED95F54CC158BF3A3FCD0B2278BDB6942D6E536CA45E3015B764FF5A94B57D232F86CFC66A29C55B9A78336026FFB6D8882E6F4CE2F8D007C225B6B3DE814FC60EB278B25FB0A1F6B4A34E920CA952BC3F14D121D5438E12634AD951EBD5911B281E3ADEC43410B91DC28B68F9D79D7F203245E87EE1DB3883B0C925C5A9BA157AB2F07ACD9A09F89EF211EED16358E78EDAF091FBA914225BF8A7DCDD2DD12EC0ABBC10E9E5F7DD48239B0A68CBD81637B1C0D7ED1DF89D714DFC6C1B7B6B3

Note: The inputted ciphertexts can be generated through the java library [https://github.com/FISCO-BCOS/paillier-lib/tree/master/paillierJava] in the paillier library.

Called by solidity contract

Take homomorphic encryption as an example. First, create a precompiled contract object in the solidity contract and call its interface, then create a CallPaillier.sol file in the consoleconsole/contracts/solidity. The file content is as follows:

// CallPaillier.sol
pragma solidity ^0.4.24;
import "./PaillierPrecompiled.sol";

contract CallPaillier {
 PaillierPrecompiled paillier;
 function CallPaillier() {

 // call PaillierPrecompiled contract
 paillier = PaillierPrecompiled(0x5003);
 }
 function add(string cipher1, string cipher2) public constant returns(string) {
 return paillier.paillierAdd(cipher1, cipher2);
 }
}

Deploy the CallPaillier contract, and then call the add interface. Using the above ciphertext as inputs, you will get the same result.

 FAQ (Revision in progress)

FAQ (Revision in progress)

Version

Q:
What changes have been made to FISCO BCOS version 2.0 compares to previous versions?
A:
Please refer to here.

 Chain building script

Chain building script

Important

The goal of the script is to let users apply FISCO BCOS as quickly as possible. For the enterprise applications deploying FISCO BCOS, please refer to Enterprise Deployment Tools .

FISCO BCOS has provided build_chain script to help users quickly build FISCO BCOS alliance chain. By default, the script downloads master branch of the latest version pre-compiles executable program from GitHub [https://github.com/FISCO-BCOS/FISCO-BCOS/tree/master-2.0]for building related environment.

Script introduction

	build_chain.sh is used to quickly generate configuration files of a chain node. For the script that depends on openssl, please according your own operating system to install openssl 1.0.2 version and above. The source code of script is located at here [https://github.com/FISCO-BCOS/FISCO-BCOS/blob/master-2.0/tools/build_chain.sh].

	For quick experience can use the -l option to specify the node IP and number. -f option supports the creation of FISCO BCOS chains for complex business scenarios by using a configuration file in a specified format. -l and -f options must be specified uniquely and cannot coexist.

	It is recommended to use -T option for testing. -T enables log level to DEBUG, p2p module listens for 0.0.0.0 by default.

Note

In order to facilitate development and experience, the default listening IP of the P2P module is 0.0.0.0. For security reasons, please modify it to a safe listening address according to the actual business network situation, such as the internal IP or a specific external IP.

Help

Usage:
 -l <IP list> [Required] "ip1:nodeNum1,ip2:nodeNum2" e.g:"192.168.0.1:2,192.168.0.2:3"
 -f <IP list file> [Optional] split by line, every line should be "ip:nodeNum agencyName groupList p2p_port,channel_port,jsonrpc_port". eg "127.0.0.1:4 agency1 1,2 30300,20200,8545"
 -v <FISCO-BCOS binary version> Default is the latest v${default_version}
 -e <FISCO-BCOS binary path> Default download fisco-bcos from GitHub. If set -e, use the binary at the specified location
 -o <Output Dir> Default ./nodes/
 -p <Start Port> Default 30300,20200,8545 means p2p_port start from 30300, channel_port from 20200, jsonrpc_port from 8545
 -q <List FISCO-BCOS releases> List FISCO-BCOS released versions
 -i <Host ip> Default 127.0.0.1. If set -i, listen 0.0.0.0
 -s <DB type> Default RocksDB. Options can be RocksDB / mysql / Scalable, RocksDB is recommended
 -d <docker mode> Default off. If set -d, build with docker
 -c <Consensus Algorithm> Default PBFT. Options can be pbft / raft /rpbft, pbft is recommended
 -C <Chain id> Default 1. Can set uint.
 -g <Generate guomi nodes> Default no
 -z <Generate tar packet> Default no
 -t <Cert config file> Default auto generate
 -6 <Use ipv6> Default no. If set -6, treat IP as IPv6
 -k <The path of ca root> Default auto generate, the ca.crt and ca.key must in the path, if use intermediate the root.crt must in the path
 -K <The path of sm crypto ca root> Default auto generate, the gmca.crt and gmca.key must in the path, if use intermediate the gmroot.crt must in the path
 -D <Use Deployment mode> Default false, If set -D, use deploy mode directory struct and make tar
 -G <channel use sm crypto ssl> Default false, only works for guomi mode
 -X <Certificate expiration time> Default 36500 days
 -T <Enable debug log> Default off. If set -T, enable debug log
 -R <Channel use ecdsa crypto ssl> Default false. If -R is set, use the ecdsa cert for channel ssl, Otherwise the rsa cert will be used
 -S <Enable statistics> Default off. If set -S, enable statistics
 -F <Disable log auto flush> Default on. If set -F, disable log auto flush
 -E <Enable free_storage_evm> Default off. If set -E, enable free_storage_evm
 -h Help
e.g
 ./manual/build_chain.sh -l 127.0.0.1:4

Option introduction

loption:

Use to specify the chain to be generated and the number of nodes under each IP, separated by commas. The script generates configuration file of corresponding node according to the input parameters. The port number of each node is incremented from 30300 by default. All nodes belong to the same organization and Group.

foption

+ Use to generate node according to configuration file. It supports more customization than `l` option.
+ Split by row. Each row represents a server, in the format of `IP:NUM AgencyName GroupList`. Items in each line are separated by spaces, and there must be **no blank lines**.
+ `IP:NUM` represents the IP address of the machine and the number of nodes on the machine.`AgencyName`represents the name of the institution to specifies the institution certificate to use. `GroupList` represents the group that the generated node belong to, split by`,`. For example, `192.168.0.1:2 agency1 1,2` represents that a machine with `ip` which is `192.168.0.1` exists two nodes. For example, 192.168.0.1:2 agency1 1,2 represents that there are two nodes on the machine with ip 192.168.0.1. These two nodes belong to agency `agency1` and belong to group1 and group2.

The following is an example of a configuration file. Each configuration item separated by a space, where GroupList represents the group that the server belongs to.

192.168.0.1:2 agency1 1,2
192.168.0.1:2 agency1 1,3
192.168.0.2:3 agency2 1
192.168.0.3:5 agency3 2,3
192.168.0.4:2 agency2 3

Suppose the above file is named ipconf, using the following command to build a chain, which indicates to use configuration file, to set the log level to DEBUG.

$ bash build_chain.sh -f ipconf -T

eoption[Optional]

is used to specify full path where fisco-bcos binary is located.Script will cope fisco-bcos to the directory named by IP number. If no path to be specified, the latest binary program of master branch is downloaded from GitHub by default.

download the latest release binary from GitHub to generate native 4 nodes
$ bash build_chain.sh -l 127.0.0.1:4
use bin/fisco-bcos binary to generate native 4 nodes
$ bash build_chain.sh -l 127.0.0.1:4 -e bin/fisco-bcos

ooption[Optional]

specifies the directory where the generated configuration is located.

poption[Optional]

specifies the starting port of the node. Each node occupies three ports which are p2p, channel, and jsonrpc, respectively. The ports are split by, and three ports must be specified. The ports used by different nodes under the same IP address are incremented from the starting port.

Two nodes occupies `30300,20200,8545` and `30301,20201,8546` respectively.
$ bash build_chain -l 127.0.0.1:2 -p 30300,20200,8545

q选项[Optional]

List FISCO BCOS released version numbers.

voption[Optional]

Used to specify the binary version used when building FISCO BCOS. build_chain downloads the latest version of [Release Page] (https://github.com/FISCO-BCOS/FISCO-BCOS/releases) by default. When setting this option, the download parameter specifies the version version and sets [compatibility].supported_version=${version} in the configuration file config.ini. If you specify the binary with the -e option, to use the binary and configure [compatibility].supported_version=${version} as the latest version number of Release page [https://github.com/FISCO-BCOS/FISCO-BCOS/releases].

doption[Optional]

Use the docker mode to build FISCO BCOS. When using this option, the binary is no longer extracted, but users are required to start the node machine to install docker, and their accounts have docker permission, which means their accounts should in the docker group.
Use following command to start node at node home.

$./start.sh

The command to start the node in script start.sh is as follows

$ docker run -d --rm --name ${nodePath} -v ${nodePath}:/data --network=host -w=/data fiscoorg/fiscobcos:latest -c config.ini

soption[Optional]

There are parameter options. The parameter is the name of db. Currently it supports three modes: RocksDB, mysql and Scalable. RocksDB is used by default.

	RocksDB use RocksDB as backend database.

	mysql needs to configure the information relates to mysql in the group ini file.

	Scalable mode, block data and state data are stored in different RocksDB databases, and block data is stored in RocksDB instance named after block height. The RocksDB instance used to store block data is scroll according to the configuration scroll_threshold_multiple*1000 and block height. If chain data need to be tailored, the Scalable mode must be used.

coption[Optional]

There are parameter options. The parameter is the consensus algorithm type, and currently supports PBFT, Raft, rPBFT. The default consensus algorithm is PBFT.

	PBFT：Set the node consensus algorithm to PBFT.

	Raft：Set the node consensus algorithm to Raft.

	rPBFT：Set the node consensus algorithm to rPBFT.

Coption[Optional]

Used to specify the chain identifier when building FISCO BCOS. When this option is set, using parameter to set [chain].id in the configuration file config.ini. The parameter range is a positive integer and the default setting is 1.

The chain is identified as 2
$ bash build_chain.sh -l 127.0.0.1:2 -C 2

goption[Optional]

No parameter option. When setting this option, to build the national cryptography version of FISCO BCOS.

zoption[Optional]

No parameter option. When setting this option, the tar package of node is generated.

toption[Optional]

This option is used to specify the certificate configuration file when certificate is generated.

[ca]
default_ca=default_ca
[default_ca]
default_days = 365
default_md = sha256

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req
[req_distinguished_name]
countryName = CN
countryName_default = CN
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default =GuangDong
localityName = Locality Name (eg, city)
localityName_default = ShenZhen
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = fisco-bcos
commonName = Organizational commonName (eg, fisco-bcos)
commonName_default = fisco-bcos
commonName_max = 64

[v3_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[v4_req]
basicConstraints = CA:TRUE

6选项[Optional]

Use IPv6 mode, listen ::

Toption[Optional]

No parameter option. When setting this option, set the log level of node to DEBUG. The related configuration of log reference here.

koption[Optional]

Use the private key specified by the user and the certificate issued the agency and node certification. The parameter is the path of ca.crt/ca.key. If the specified private key and certificate are intermediate Ca, root.crt should also be included in this folder to store the upper certificate chain.

Koption[Optional]

Use the private key specified by the user and the certificate issued the agency and node certification in guomi mode. The parameter is the path of gmca.crt/gmca.key. If the specified private key and certificate are intermediate Ca, gmroot.crt should also be included in this folder to store the upper certificate chain.

G选项[Optional]

From 2.5.0, when use smcrypto mode, user can config to use GM SSL between node and sdk, the option set chain.sm_crypto_channel=true.

Doption[Optional]

No parameter option. When this option is set, the directory name of the generated node is IP_P2P-port.

Eoption[Optional]

No parameter option, when setting this option, [Free Storage] (../design/virtual_machine/gas.html#evm-gas) Gas mode is enabled, and Free Storage Gas mode is disabled by default.

Node file organization

	cert folder stores root certificate and organization certificate of the chain.

	The folder named by IP address stores the certificate configuration file required by related configuration of all nodes , fisco-bcos executable program, and SDK in the server.

	The node* folder under each IP folder stores configuration file required by the node. config.ini is the main configuration of node. In conf directory, to store certificate files and group related configurations. For the configuration detail, please refer to here. Each node provides two scripts which are used to start and stop the node.

	Under each IP folder, two scripts providing start_all.sh and stop_all.sh are used to start and stop all nodes.

nodes/
├── 127.0.0.1
│ ├── fisco-bcos # binary program
│ ├── node0 # node0 folder
│ │ ├── conf # configuration folder
│ │ │ ├── ca.crt # chain root certificate
│ │ │ ├── group.1.genesis # the initialized configuration of group1, the file cannot be changed
│ │ │ ├── group.1.ini # the configuration file of group1
│ │ │ ├── node.crt # node certificate
│ │ │ ├── node.key # node private key
│ │ │ ├── node.nodeid # node id, represented by hexadecimal of public key
│ │ ├── config.ini # node main configuration file, to configure listening IP, port, etc.
│ │ ├── start.sh # start script, uses for starting node
│ │ └── stop.sh # stop script, uses for stopping node
│ ├── node1 # node1 folder
│ │.....
│ ├── node2 # node2 folder
│ │.....
│ ├── node3 # node3 folder
│ │.....
│ ├── sdk # SDK needs to be used
│ │ ├── ca.crt # chain root certificate
│ │ ├── sdk.crt # The certificate file required by SKD, to use when establishing a connection
│ │ └── sdk.key # The private key file required by SKD, to use when establishing a connection
| | ├── gm # SDK sm ssl connection with nodes configuration，note：this directory is only generated when sm blockchain environment is generated for the node to make SSL connection with the SDK
| | │ ├── gmca.crt # sm ssl connection root certificate
| | │ ├── gmensdk.crt # sm ssl connection encrypt certificate
| | │ ├── gmensdk.key # sm ssl connection encrypt certificate key
| | │ ├── gmsdk.crt # sm ssl connection sign certificate
| | │ └── gmsdk.key # sm ssl connection sign certificate key
├── cert # certificate folder
│ ├── agency # agency certificate folder
│ │ ├── agency.crt # agency certificate
│ │ ├── agency.key # agency private key
│ │ ├── agency.srl
│ │ ├── ca-agency.crt
│ │ ├── ca.crt
│ │ └── cert.cnf
│ ├── ca.crt # chain certificate
│ ├── ca.key # chain private key
│ ├── ca.srl
│ └── cert.cnf

Scripts generated by build_chain

start_all.sh

start all nodes in current directory

stop_all.sh

stop all nodes in current directory

download_console.sh

download console

	v specific version of console

	f automatically configure console

download_bin.sh

download fisco-bcos precompiled binary

Usage:
 -v <Version> Download binary of spectfic version, default latest
 -b <Branch> Download binary of spectfic branch
 -o <Output Dir> Default ./bin
 -l List FISCO-BCOS released versions
 -m Download mini binary, only works with -b option
 -h Help
e.g
 ./download_bin.sh -v 2.7.1

Example

Four nodes of group 1 on a local server

To build a 4-node FISCO BCOS alliance chain on native machine for using the default start port 30300,20200,8545 (4 nodes will occupy 30300-30303,20200-20203,8545-8548) and listening to the external network Channel and jsonrpc ports while allowing the external network interacts with node through SDK or API.

to build FISCO BCOS alliance chain
$ bash build_chain.sh -l 127.0.0.1:4
after generating successes, to output `All completed` to mention
Generating CA key...
==
Generating keys ...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
Generating configurations...
Processing IP:127.0.0.1 Total:4 Agency:agency Groups:1
==
[INFO] FISCO-BCOS Path : bin/fisco-bcos
[INFO] Start Port : 30300 20200 8545
[INFO] Server IP : 127.0.0.1:4
[INFO] State Type : storage
[INFO] RPC listen IP : 127.0.0.1
[INFO] Output Dir : /Users/fisco/WorkSpace/FISCO-BCOS/tools/nodes
[INFO] CA Key Path : /Users/fisco/WorkSpace/FISCO-BCOS/tools/nodes/cert/ca.key
==
[INFO] All completed. Files in /Users/fisco/WorkSpace/FISCO-BCOS/tools/nodes

Add new node into Groups

This section takes Group1 generated in the previous section as an example to add a consensus node.

Generate private key certificates for new node

The next operation is done under the nodes/127.0.0.1 directory generated in the previous section.

	Acquisition certificate generation script

curl -#LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master-2.0/tools/gen_node_cert.sh

Note

	If the script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/tools/gen_node_cert.sh

	Generating new node private key certificates

-c specify the path where the certificate and private key are located
-o Output to the specified folder, where new certificates and private keys issued by agency agency1 exist in newNode/conf

bash gen_node_cert.sh -c ../cert/agency -o newNode

If you use guomi version of fisco, please execute below command to generate cert.

bash gen_node_cert.sh -c ../cert/agency -o newNodeGm -g ../gmcert/agency/

Preparing configuration files

	Copy Node 0 Profile and Tool Script in Group 1

cp node0/config.ini newNode/config.ini
cp node0/conf/group.1.genesis newNode/conf/group.1.genesis
cp node0/conf/group.1.ini newNode/conf/group.1.ini
cp node0/*.sh newNode/
cp -r node0/scripts newNode/

	Update IP and ports monitored in newNode/config.ini, include IP and Port in [rpc] and [p2p]。

	Add IP and Port in the new node’s P2P configuration to the [p2p] field in the original node’s config.ini. Assuming that the new node IP: Port is 127.0.0.1:30304, the modified [P2P] configuration is

[p2p]
 listen_ip=0.0.0.0
 listen_port=30304
 ;enable_compress=true
 ; nodes to connect
 node.0=127.0.0.1:30300
 node.1=127.0.0.1:30301
 node.2=127.0.0.1:30302
 node.3=127.0.0.1:30303
 node.4=127.0.0.1:30304

	Start node, use newNode/start.sh

	Add new nodes to group 1 through console, refer to here and here

Start a new node, check links and consensus

generate new SDK certificate of agency

The next operation is done under the nodes/127.0.0.1 directory generated in the previous section.

	Acquisition certificate generation script

curl -#LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master-2.0/tools/gen_node_cert.sh

Note

	If the script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/tools/gen_node_cert.sh

	Generating new node private key certificates

-c specify the path where the certificate and private key are located
-o Output to the specified folder, where new certificates and private keys issued by agency exist in newSDK

bash gen_node_cert.sh -c ../cert/agency -o newSDK -s

If you use guomi version of fisco, please execute below command to generate cert.

bash gen_node_cert.sh -c ../cert/agency -o newSDK -g ../gmcert/agency/ -s

Generating new agency private key certificates

	Acquisition agency certificate generation script

curl -#LO https://raw.githubusercontent.com/FISCO-BCOS/FISCO-BCOS/master-2.0/tools/gen_agency_cert.sh

Note

	If the script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/FISCO-BCOS/raw/master-2.0/tools/gen_agency_cert.sh

	Generating new agency private key certificates

-c path must have ca.crt and ca.key， if use intermediate ca，then root.crt is needed
-g path must have gmca.crt and gmca.key， if use intermediate ca，then gmroot.crt is needed
-a newAgencyName
bash gen_agency_cert.sh -c nodes/cert/ -a newAgencyName

国密版本请执行下面的指令。

bash gen_agency_cert.sh -c nodes/cert/ -a newAgencyName -g nodes/gmcert/

Multi-server and multi-group

Using the build_chain script to build a multi-server and multi-group FISCO BCOS alliance chain requires the script configuration file. For details, please refer to here.

 Console

Console

 Console

Console

Important

	Console 1.x series is based on Web3SDK implementation, after console 2.6+ is based on Java SDK implementation, this tutorial is aimed at 2.6 and above version console, for 1.x version console usage documentation please refer to here

	You can view the current console version through the command ./start.sh --version

console [https://github.com/FISCO-BCOS/console/tree/master-2.0] is an important interactive client tool of FISCO BCOS 2.0. It establishes a connection with blockchain node through Java SDK to request read and write access for blockchain node data. Console has a wealth of commands, including blockchain status inquiry, blockchain nodes management, contracts deployment and calling. In addition, console provides a contract compilation tool that allows users to easily and quickly compile Solidity contract files into Java contract files.

Console command

Console command consists of two parts, the instructions and the parameters related to the instruction:

	Instruction: instruction is an executed operation command, including blockchain status inquiry and contracts deployment and calling. And some of the instructions call the JSON-RPC interface, so they have same name as the JSON-RPC interface.
Use suggestions: instructions can be completed using the tab key, and support for displaying historical input commands by pressing the up and down keys.

	Parameters related to the instruction: parameters required by instruction call interface. Instructions to parameters and parameters to parameters are separated by spaces. The parameters name same as JSON-RPC interface and the explanation of getting information field can be referred to JSON-RPC API.

Common command link:

Contract related commands

	useCNS to deploy and call contract (recommend)

	deploy contract: deployByCNS

	call contract: callByCNS

	query CNS deployment contract information: queryCNS

	deploy and call contract normally

	deploy contract: deploy

	call contract: call

Other commands

	query block number:getBlockNumber

	query Sealer list:getSealerList

	query the information of transaction receipt: getTransactionReceipt

	switch group: switch

Shortcut key

	Ctrl+A: move cursor to the beginning of line

	Ctrl+D: exit console

	Ctrl+E: move cursor to the end of line

	Ctrl+R: search for the history commands have been entered

	↑: browse history commands forward

	↓: browse history commands backward

Console response

When a console command is launched, the console will obtain the result of the command execution and displays the result at the terminal. The execution result is divided into two categories:

	True: The command returns to the true execution result as a string or json.

	False: The command returns to the false execution result as a string or json.

	When console command call the JSON-RPC interface, error code reference here.

	When console command call the Precompiled Service interface, error code reference here.

Console configuration and operation

Important

Precondition：to build FISCO BCOS blockchain, please refer to Building Chain Script or Enterprise Tools.

Get console

$ cd ~ && mkdir fisco && cd fisco
get console
$ curl -#LO https://github.com/FISCO-BCOS/console/releases/download/v2.9.2/download_console.sh && bash download_console.sh

Note

	If the script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/download_console.sh && bash download_console.sh

The directory structure is as follows:

|-- apps # console jar package directory
| -- console.jar
|-- lib # related dependent jar package directory
|-- conf
│ ├── config-example.toml # configuration file
│ ├── group-generate-config.toml # group generation configuration file, please refer to command genrateGroupFromFile for details
│ └── log4j.properties # log configuration file
|-- contracts # directory where contract locates
| -- solidity # directory where solidity contract locates
| -- HelloWorld.sol # normal contract: HelloWorld contract, is deployable and callable
| -- TableTest.sol # the contracts by using CRUD interface: TableTest contract, is deployable and callable
| -- Table.sol # CRUD interfac contract
| -- console # The file directory of contract abi, bin, java compiled when console deploys the contract
| -- sdk # The file directory of contract abi, bin, java compiled by sol2java.sh script
|-- start.sh # console start script
|-- get_account.sh # account generate script
|-- sol2java.sh # development tool script for compiling solidity contract file as java contract file
|-- replace_solc_jar.sh # a script for replacing the compiling jar package

Configure console

	Blockchain node and certificate configuration:

	To copy the ca.crt, sdk.crt, and sdk.key files in the sdk node directory to the conf directory.

	To rename the config-example.toml file in the conf directory to the config.toml file. To configure the config.toml file, where the remark content is modified according to the blockchain node configuration. **Hint: If the channel_listen_ip(If the node version is earlier than v2.3.0, check the configuration item listen_ip) set through chain building is 127.0.0.1 or 0.0.0.0 and the channel_port is 20200, the config.toml configuration is not modified. **

[cryptoMaterial]

certPath = "conf" # The certification path

The following configurations take the certPath by default if commented
caCert = "conf/ca.crt" # CA cert file path
 # If connect to the GM node, default CA cert path is ${certPath}/gm/gmca.crt

sslCert = "conf/sdk.crt" # SSL cert file path
 # If connect to the GM node, the default SDK cert path is ${certPath}/gm/gmsdk.crt

sslKey = "conf/sdk.key" # SSL key file path
 # If connect to the GM node, the default SDK privateKey path is ${certPath}/gm/gmsdk.key

enSslCert = "conf/gm/gmensdk.crt" # GM encryption cert file path
 # default load the GM SSL encryption cert from ${certPath}/gm/gmensdk.crt

enSslKey = "conf/gm/gmensdk.key" # GM ssl cert file path
 # default load the GM SSL encryption privateKey from ${certPath}/gm/gmensdk.key

[network]
peers=["127.0.0.1:20200", "127.0.0.1:20201"] # The peer list to connect

Configure a private topic as a topic message sender.
[[amop]]
topicName = "PrivateTopic1"
publicKeys = ["conf/amop/consumer_public_key_1.pem"] # Public keys of the nodes that you want to send AMOP message of this topic to.

Configure a private topic as a topic subscriber.
[[amop]]
topicName = "PrivateTopic2"
privateKey = "conf/amop/consumer_private_key.p12" # Your private key that used to subscriber verification.
password = "123456"

[account]
keyStoreDir = "account" # The directory to load/store the account file, default is "account"
accountFilePath = "" # The account file path (default load from the path specified by the keyStoreDir)
accountFileFormat = "pem" # The storage format of account file (Default is "pem", "p12" as an option)

accountAddress = "" # The transactions sending account address
 # Default is a randomly generated account
 # The randomly generated account is stored in the path specified by the keyStoreDir

password = "" # The password used to load the account file

[threadPool]
channelProcessorThreadSize = "16" # The size of the thread pool to process channel callback
 # Default is the number of cpu cores

receiptProcessorThreadSize = "16" # The size of the thread pool to process transaction receipt notification
 # Default is the number of cpu cores

maxBlockingQueueSize = "102400" # The max blocking queue size of the thread pool

Configuration detail reference here.

Important

Console configuration instructions

When the console configuration file configures multiple node connections in a group, some nodes in the group may leave the group during operation. Therefore, it shows a norm which is when the console is polling, the return information may be inconsistent. It is recommended to configure a node or ensure that the configured nodes are always in the group when using the console, so that the inquired information in the group will keep consistent during the synchronization time.

Contract compilation tool

Console provides a special compilation contract tool that allows developers to compile Solidity contract files into Java contract files. Two steps for using the tool:

	To place the Solidity contract file in the contracts/solidity directory.

	Complete the task of compiling contract by running the sol2java.sh script (requires specifying a java package name). For example, there are HelloWorld.sol, TableTest.sol, and Table.sol contracts in the contracts/solidity directory, and we specify the package name as org.com.fisco. The command is as follows:

$ cd ~/fisco/console
$./sol2java.sh org.com.fisco

After running successfully, the directories of Java, ABI and bin will be generated in the console/contracts/sdk directory as shown below.

```bash
|-- abi # to compile the generated abi directory and to store the abi file compiled by solidity contract
|   |-- HelloWorld.abi
|   |-- Table.abi
|   |-- TableTest.abi
|-- bin # to compile the generated bin directory and to store the bin file compiled by solidity contract
|   |-- HelloWorld.bin
|   |-- Table.bin
|   |-- TableTest.bin
|-- java  # to store compiled package path and Java contract file
|   |-- org
|       |-- com
|           |-- fisco
|               |-- HelloWorld.java # the target Java file which is compiled successfully
|               |-- Table.java  # the CRUD interface Java file which is compiled successfully
|               |-- TableTest.java  # the TableTest Java file which is compiled successfully
```


In the java directory, org/com/fisco/ package path directory is generated. In the package path directory, the java contract files HelloWorld.java, TableTest.java and Table.java will be generated. HelloWorld.java and TableTest.java are the java contract files required by the java application.

Launch console

Start the console while the node is running:

$./start.sh
To output the following information to indicate successful launch
===
Welcome to FISCO BCOS console(2.0.0)!
Type 'help' or 'h' for help. Type 'quit' or 'q' to quit console.
 ________ ______ ______ ______ ______ _______ ______ ______ ______
| | \/ \ / \ / \ | \ / \ / \ / \
| $$$$$$$$\$$$$$| $$$$$$| $$$$$$| $$$$$$\ | $$$$$$$| $$$$$$| $$$$$$| $$$$$$\
| $$__ | $$ | $$___\$| $$ \$| $$ | $$ | $$__/ $| $$ \$| $$ | $| $$___\$$
| $$ \ | $$ \$$ \| $$ | $$ | $$ | $$ $| $$ | $$ | $$\$$ \
| $$$$$ | $$ _\$$$$$$| $$ __| $$ | $$ | $$$$$$$| $$ __| $$ | $$_\$$$$$$\
| $$ _| $$_| __| $| $$__/ | $$__/ $$ | $$__/ $| $$__/ | $$__/ $| __| $$
| $$ | $$ \\$$ $$\$$ $$\$$ $$ | $$ $$\$$ $$\$$ $$\$$ $$
 \$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$

===

Launch script description

To view the current console version:

./start.sh --version
console version: 2.0.0

Account using method

Console loads private key

The console provides the account generation script get_account.sh (for the script tutorial, please refer to Account Management Document. The generated account file is in the accounts directory, and the account file loaded by console must be placed in the directory.

The console startup methods are as follows:

./start.sh
./start.sh groupID
./start.sh groupID -pem pemName
./start.sh groupID -p12 p12Name

Default start

The console randomly generates an account that is started with the group number specified in the console configuration file.

./start.sh

Specify group number to start

The console randomly generates an account that is started with the group number specified on the command line.

./start.sh 2

	Note: The specified group needs to configure ‘bean’ in the console configuration file.

Start with PEM format private key file

	Start with the account of the specified pem file, enter the parameters: group number, -pem, and pem file path

./start.sh 1 -pem accounts/0xebb824a1122e587b17701ed2e512d8638dfb9c88.pem

Start with PKCS12 format private key file

	Start with the account of the specified p12 file, enter the parameters: group number, -p12, and p12 file path

./start.sh 1 -p12 accounts/0x5ef4df1b156bc9f077ee992a283c2dbb0bf045c0.p12
Enter Export Password:

Console command

help

Enter help or h to see all the commands on the console.

[group:1]> help
* help([-h, -help, --h, --H, --help, -H, h]) Provide help information
* addObserver Add an observer node
* addSealer Add a sealer node
* call Call a contract by a function and parameters
* callByCNS Call a contract by a function and parameters by CNS
* create Create table by sql
* delete Remove records by sql
* deploy Deploy a contract on blockchain
* deployByCNS Deploy a contract on blockchain by CNS
* desc Description table information
* quit([quit, q, exit]) Quit console
* freezeAccount Freeze the account
* freezeContract Freeze the contract
* generateGroup Generate a group for the specified node
* generateGroupFromFile Generate group according to the specified file
* getAccountStatus GetAccountStatus of the account
* getAvailableConnections Get the connection information of the nodes connected with the sdk
* getBatchReceiptsByBlockHashAndRange Get batched transaction receipts according to block hash and the transaction range
* getBatchReceiptsByBlockNumberAndRange Get batched transaction receipts according to block number and the transaction range
* getBlockByHash Query information about a block by hash
* getBlockByNumber Query information about a block by number
* getBlockHashByNumber Query block hash by block number
* getBlockHeaderByHash Query information about a block header by hash
* getBlockHeaderByNumber Query information about a block header by block number
* getBlockNumber Query the number of most recent block
* getCode Query code at a given address
* getConsensusStatus Query consensus status
* getContractStatus Get the status of the contract
* getCryptoType Get the current crypto type
* getCurrentAccount Get the current account info
* getDeployLog Query the log of deployed contracts
* getGroupConnections Get the node information of the group connected to the SDK
* getGroupList Query group list
* getGroupPeers Query nodeId list for sealer and observer nodes
* getNodeIDList Query nodeId list for all connected nodes
* getNodeInfo Query the specified node information.
* getNodeVersion Query the current node version
* getObserverList Query nodeId list for observer nodes.
* getPbftView Query the pbft view of node
* getPeers Query peers currently connected to the client
* getPendingTransactions Query pending transactions
* getPendingTxSize Query pending transactions size
* getSealerList Query nodeId list for sealer nodes
* getSyncStatus Query sync status
* getSystemConfigByKey Query a system config value by key
* getTotalTransactionCount Query total transaction count
* getTransactionByBlockHashAndIndex Query information about a transaction by block hash and transaction index position
* getTransactionByBlockNumberAndIndex Query information about a transaction by block number and transaction index position
* getTransactionByHash Query information about a transaction requested by transaction hash
* getTransactionByHashWithProof Query the transaction and transaction proof by transaction hash
* getTransactionReceipt Query the receipt of a transaction by transaction hash
* getTransactionReceiptByHashWithProof Query the receipt and transaction receipt proof by transaction hash
* grantCNSManager Grant permission for CNS by address
* grantCommitteeMember Grant the account committee member
* grantContractStatusManager Grant contract authorization to the user
* grantContractWritePermission Grant the account the contract write permission.
* grantDeployAndCreateManager Grant permission for deploy contract and create user table by address
* grantNodeManager Grant permission for node configuration by address
* grantOperator Grant the account operator
* grantSysConfigManager Grant permission for system configuration by address
* grantUserTableManager Grant permission for user table by table name and address
* insert Insert records by sql
* listAbi List functions and events info of the contract.
* listAccount List the current saved account list
* listCNSManager Query permission information for CNS
* listCommitteeMembers List all committee members
* listContractStatusManager List the authorization of the contract
* listContractWritePermission Query the account list which have write permission of the contract.
* listDeployAndCreateManager Query permission information for deploy contract and create user table
* listDeployContractAddress List the contractAddress for the specified contract
* listNodeManager Query permission information for node configuration
* listOperators List all operators
* listSysConfigManager Query permission information for system configuration
* listUserTableManager Query permission for user table information
* loadAccount Load account for the transaction signature
* newAccount Create account
* queryCNS Query CNS information by contract name and contract version
* queryCommitteeMemberWeight Query the committee member weight
* queryGroupStatus Query the status of the specified group of the specified node
* queryThreshold Query the threshold
* queryVotesOfMember Query votes of a committee member.
* queryVotesOfThreshold Query votes of updateThreshold operation
* recoverGroup Recover the specified group of the specified node
* registerCNS RegisterCNS information for the given contract
* removeGroup Remove the specified group of the specified node
* removeNode Remove a node
* revokeCNSManager Revoke permission for CNS by address
* revokeCommitteeMember Revoke the account from committee member
* revokeContractStatusManager Revoke contract authorization to the user
* revokeContractWritePermission Revoke the account the contract write permission
* revokeDeployAndCreateManager Revoke permission for deploy contract and create user table by address
* revokeNodeManager Revoke permission for node configuration by address
* revokeOperator Revoke the operator
* revokeSysConfigManager Revoke permission for system configuration by address
* revokeUserTableManager Revoke permission for user table by table name and address
* switch([s]) Switch to a specific group by group ID
* select Select records by sql
* setSystemConfigByKey Set a system config value by key
* startGroup Start the specified group of the specified node
* stopGroup Stop the specified group of the specified node
* unfreezeAccount Unfreeze the account
* unfreezeContract Unfreeze the contract
* update Update records by sql
* updateCommitteeMemberWeight Update the committee member weight
* updateThreshold Update the threshold

**Note: **

	help shows the meaning of each command: command and command description

	for instructions on how to use specific commands, enter the command -h or --help to view them. E.g:

[group:1]> getBlockByNumber -h
Query information about a block by block number.
Usage: getBlockByNumber blockNumber [boolean]
blockNumber -- Integer of a block number, from 0 to 2147483647.
boolean -- (optional) If true it returns the full transaction objects, if false only the hashes of the transactions.

switch

To run switch or s to switch to the specified group. The group number is displayed in front of the command prompt.

[group:1]> switch 2
Switched to group 2.

[group:2]>

**Note: ** For the group that needs to be switched, make sure that the information of the group is configured in applicationContext.xml (the initial state of this configuration file only provides the group 1 configuration) in the console/conf directory, the configured node ID and port in the group are correct, and the node is running normally.

getBlockNumber

To run getBlockNumber to view block number.

[group:1]> getBlockNumber
90

getSealerList

To run getSealerList to view the list of consensus nodes.

[group:1]> getSealerList
[
 0c0bbd25152d40969d3d3cee3431fa28287e07cff2330df3258782d3008b876d146ddab97eab42796495bfbb281591febc2a0069dcc7dfe88c8831801c5b5801,
 10b3a2d4b775ec7f3c2c9e8dc97fa52beb8caab9c34d026db9b95a72ac1d1c1ad551c67c2b7fdc34177857eada75836e69016d1f356c676a6e8b15c45fc9bc34,
 622af37b2bd29c60ae8f15d467b67c0a7fe5eb3e5c63fdc27a0ee8066707a25afa3aa0eb5a3b802d3a8e5e26de9d5af33806664554241a3de9385d3b448bcd73
]

getObserverList

To run getSealerList to view the list of observer nodes.

[group:1]> getObserverList
[
 037c255c06161711b6234b8c0960a6979ef039374ccc8b723afea2107cba3432dbbc837a714b7da20111f74d5a24e91925c773a72158fa066f586055379a1772
]

getNodeIDList

To run getNodeIDList to view the nodes and the list of nodeIds connected to p2p nodes.

[group:1]> getNodeIDList
[
 41285429582cbfe6eed501806391d2825894b3696f801e945176c7eb2379a1ecf03b36b027d72f480e89d15bacd43462d87efd09fb0549e0897f850f9eca82ba,
 87774114e4a496c68f2482b30d221fa2f7b5278876da72f3d0a75695b81e2591c1939fc0d3fadb15cc359c997bafc9ea6fc37345346acaf40b6042b5831c97e1,
 29c34347a190c1ec0c4507c6eed6a5bcd4d7a8f9f54ef26da616e81185c0af11a8cea4eacb74cf6f61820292b24bc5d9e426af24beda06fbd71c217960c0dff0,
 d5b3a9782c6aca271c9642aea391415d8b258e3a6d92082e59cc5b813ca123745440792ae0b29f4962df568f8ad58b75fc7cea495684988e26803c9c5198f3f8
]

getPbftView

To run getPbftView to view the pbft viewgraph.

[group:1]> getPbftView
2730

getConsensusStatus

To run getConsensusStatus to view the consensus status.

[group:1]> getConsensusStatus
ConsensusInfo{
 baseConsensusInfo=BasicConsensusInfo{
 nodeNum='4',
 nodeIndex='3',
 maxFaultyNodeNum='1',
 sealerList=[
 11e1be251ca08bb44f36fdeedfaeca40894ff80dfd80084607a75509edeaf2a9c6fee914f1e9efda571611cf4575a1577957edfd2baa9386bd63eb034868625f,
 78a313b426c3de3267d72b53c044fa9fe70c2a27a00af7fea4a549a7d65210ed90512fc92b6194c14766366d434235c794289d66deff0796f15228e0e14a9191,
 95b7ff064f91de76598f90bc059bec1834f0d9eeb0d05e1086d49af1f9c2f321062d011ee8b0df7644bd54c4f9ca3d8515a3129bbb9d0df8287c9fa69552887e,
 b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36
],
 consensusedBlockNumber='1',
 highestblockNumber='0',
 groupId='1',
 protocolId='65544',
 accountType='1',
 cfgErr='false',
 omitEmptyBlock='true',
 nodeId='b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36',
 allowFutureBlocks='true',
 connectedNodes='3',
 currentView='1735',
 toView='1735',
 leaderFailed='false',
 highestblockHash='0x4f6394763c33c1709e5a72b202ad4d7a3b8152de3dc698cef6f675ecdaf20a3b'
 },
 viewInfos=[
 ViewInfo{
 nodeId='11e1be251ca08bb44f36fdeedfaeca40894ff80dfd80084607a75509edeaf2a9c6fee914f1e9efda571611cf4575a1577957edfd2baa9386bd63eb034868625f',
 view='1732'
 },
 ViewInfo{
 nodeId='78a313b426c3de3267d72b53c044fa9fe70c2a27a00af7fea4a549a7d65210ed90512fc92b6194c14766366d434235c794289d66deff0796f15228e0e14a9191',
 view='1733'
 },
 ViewInfo{
 nodeId='95b7ff064f91de76598f90bc059bec1834f0d9eeb0d05e1086d49af1f9c2f321062d011ee8b0df7644bd54c4f9ca3d8515a3129bbb9d0df8287c9fa69552887e',
 view='1734'
 },
 ViewInfo{
 nodeId='b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36',
 view='1735'
 }
]
}

getSyncStatus

To run getSyncStatus to view the synchronization status.

[group:1]> getSyncStatus
{
 "blockNumber":5,
 "genesisHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "isSyncing":false,
 "latestHash":"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
 "nodeId":"cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd",
 "peers":[
 {
 "blockNumber":5,
 "genesisHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "latestHash":"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
 "nodeId":"0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278"
 },
 {
 "blockNumber":5,
 "genesisHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "latestHash":"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
 "nodeId":"2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108"
 },
 {
 "blockNumber":5,
 "genesisHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "latestHash":"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
 "nodeId":"ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec"
 }
],
 "protocolId":265,
 "txPoolSize":"0"
}

getNodeVersion

To run getNodeVersion to view the node version.

[group:1]> getNodeVersion
{
 "Build Time":"20200619 06:32:10",
 "Build Type":"Linux/clang/Release",
 "Chain Id":"1",
 "FISCO-BCOS Version":"2.5.0",
 "Git Branch":"HEAD",
 "Git Commit Hash":"72c6d770e5cf0f4197162d0e26005ec03d30fcfe",
 "Supported Version":"2.5.0"
}

getPeers

To run getPeers to view the peers of node.

[group:1]> getPeers
[
	{
		"IPAndPort":"127.0.0.1:50723",
		"nodeId":"8718579e9a6fee647b3d7404d59d66749862aeddef22e6b5abaafe1af6fc128fc33ed5a9a105abddab51e12004c6bfe9083727a1c3a22b067ddbaac3fa349f7f",
		"Topic":[

]
	},
	{
		"IPAndPort":"127.0.0.1:50719",
		"nodeId":"697e81e512cffc55fc9c506104fb888a9ecf4e29eabfef6bb334b0ebb6fc4ef8fab60eb614a0f2be178d0b5993464c7387e2b284235402887cdf640f15cb2b4a",
		"Topic":[

]
	},
	{
		"IPAndPort":"127.0.0.1:30304",
		"nodeId":"8fc9661baa057034f10efacfd8be3b7984e2f2e902f83c5c4e0e8a60804341426ace51492ffae087d96c0b968bd5e92fa53ea094ace8d1ba72de6e4515249011",
		"Topic":[

]
	}
]

getGroupPeers

To run getGroupPeers to view the list of consensus and observer node of the group where the node is located.

[group:1]> getGroupPeers
[
 cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd,
 ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec,
 0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278,
 2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108
]

getGroupList

To run getGroupList to view the list of group:

[group:1]> getGroupList
[1]

getBlockHeaderByHash

Run getBlockHeaderByHash to query the block header information based on the block hash.

parameter:

	Block hash: the hash value of the block starting with 0x

	Signature list flag: The default is false, that is, the block signature list information is not displayed in the block header information, and if set to true, the block signature list is displayed.

[group:1]> getBlockHeaderByHash 0x99576e7567d258bd6426ddaf953ec0c953778b2f09a078423103c6555aa4362d
{
 "dbHash":"0x00",
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0x99576e7567d258bd6426ddaf953ec0c953778b2f09a078423103c6555aa4362d",
 "logsBloom":"0x00",
 "number":1,
 "parentHash":"0x4f6394763c33c1709e5a72b202ad4d7a3b8152de3dc698cef6f675ecdaf20a3b",
 "receiptsRoot":"0x69a04fa6073e4fc0947bac7ee6990e788d1e2c5ec0fe6c2436d0892e7f3c09d2",
 "sealer":"0x2",
 "sealerList":[
 "11e1be251ca08bb44f36fdeedfaeca40894ff80dfd80084607a75509edeaf2a9c6fee914f1e9efda571611cf4575a1577957edfd2baa9386bd63eb034868625f",
 "78a313b426c3de3267d72b53c044fa9fe70c2a27a00af7fea4a549a7d65210ed90512fc92b6194c14766366d434235c794289d66deff0796f15228e0e14a9191",
 "95b7ff064f91de76598f90bc059bec1834f0d9eeb0d05e1086d49af1f9c2f321062d011ee8b0df7644bd54c4f9ca3d8515a3129bbb9d0df8287c9fa69552887e",
 "b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36"
],
 "stateRoot":"0x00",
 "timestamp":"0x173ad8703d6",
 "transactionsRoot":"0xb563f70188512a085b5607cac0c35480336a566de736c83410a062c9acc785ad"
}

getBlockHeaderByNumber

Run getBlockHeaderByNumber to query the block header information according to the block height.
parameter:

	Block height

	Signature list flag: The default is false, that is, the block signature list information is not displayed in the block header information, and if set to true, the block signature list is displayed.

[group:1]> getBlockHeaderByNumber 1 true
{
 "dbHash":"0x00",
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0x99576e7567d258bd6426ddaf953ec0c953778b2f09a078423103c6555aa4362d",
 "logsBloom":"0x00",
 "number":1,
 "parentHash":"0x4f6394763c33c1709e5a72b202ad4d7a3b8152de3dc698cef6f675ecdaf20a3b",
 "receiptsRoot":"0x69a04fa6073e4fc0947bac7ee6990e788d1e2c5ec0fe6c2436d0892e7f3c09d2",
 "sealer":"0x2",
 "sealerList":[
 "11e1be251ca08bb44f36fdeedfaeca40894ff80dfd80084607a75509edeaf2a9c6fee914f1e9efda571611cf4575a1577957edfd2baa9386bd63eb034868625f",
 "78a313b426c3de3267d72b53c044fa9fe70c2a27a00af7fea4a549a7d65210ed90512fc92b6194c14766366d434235c794289d66deff0796f15228e0e14a9191",
 "95b7ff064f91de76598f90bc059bec1834f0d9eeb0d05e1086d49af1f9c2f321062d011ee8b0df7644bd54c4f9ca3d8515a3129bbb9d0df8287c9fa69552887e",
 "b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36"
],
 "signatureList":[
 {
 "index":"0x3",
 "signature":"0xb5b41e49c0b2bf758322ecb5c86dc3a3a0f9b98891b5bbf50c8613a241f05f595ce40d0bb212b6faa32e98546754835b057b9be0b29b9d0c8ae8b38f7487b8d001"
 },
 {
 "index":"0x0",
 "signature":"0x411cb93f816549eba82c3bf8c03fa637036dcdee65667b541d0da06a6eaea80d16e6ca52bf1b08f77b59a834bffbc124c492ea7a1601d0c4fb257d97dc97cea600"
 },
 {
 "index":"0x1",
 "signature":"0xea3c27c2a1486c7942c41c4dc8f15fbf9a668aff2ca40f00701d73fa659a14317d45d74372d69d43ced8e81f789e48140e7fa0c61997fa7cde514c654ef9f26d00"
 }
],
 "stateRoot":"0x00",
 "timestamp":"0x173ad8703d6",
 "transactionsRoot":"0xb563f70188512a085b5607cac0c35480336a566de736c83410a062c9acc785ad"
}

getBlockByHash

To run getBlockByHash to view block information according to the block hash.
Parameter:

	Block hash: The hash starting with 0x.

	Transaction sign: to set it false by default, the transaction in the block only displays the hash. To set it true, it displays the transaction specific information.

[group:1]> getBlockByHash 0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855
{
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
 "logsBloom":"0x00",
 "number":"0x1",
 "parentHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "sealer":"0x0",
 "sealerList":[
 "0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278",
 "2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108",
 "cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd",
 "ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec"
],
 "stateRoot":"0x9711819153f7397ec66a78b02624f70a343b49c60bc2f21a77b977b0ed91cef9",
 "timestamp":"0x1692f119c84",
 "transactions":[
 "0xa14638d47cc679cf6eeb7f36a6d2a30ea56cb8dcf0938719ff45023a7a8edb5d"
],
 "transactionsRoot":"0x516787f85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"
}
[group:1]> getBlockByHash 0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855 true
{
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
 "logsBloom":"0x00",
 "number":"0x1",
 "parentHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "sealer":"0x0",
 "sealerList":[
 "0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278",
 "2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108",
 "cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd",
 "ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec"
],
 "stateRoot":"0x9711819153f7397ec66a78b02624f70a343b49c60bc2f21a77b977b0ed91cef9",
 "timestamp":"0x1692f119c84",
 "transactions":[
 {
 "blockHash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
 "blockNumber":"0x1",
 "from":"0x7234c32327795e4e612164e3442cfae0d445b9ad",
 "gas":"0x1c9c380",
 "gasPrice":"0x1",
 "hash":"0xa14638d47cc679cf6eeb7f36a6d2a30ea56cb8dcf0938719ff45023a7a8edb5d",
 "input":"0x608060405234801561001057600080fd5b506040805190810160405280600d81526020017f48656c6c6f2c20576f726c6421000000000000000000000000000000000000008152506000908051906020019061005c929190610062565b50610107565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106100a357805160ff19168380011785556100d1565b828001600101855582156100d1579182015b828111156100d05782518255916020019190600101906100b5565b5b5090506100de91906100e2565b5090565b61010491905b808211156101005760008160009055506001016100e8565b5090565b90565b6102d7806101166000396000f30060806040526004361061004c576000357c0100900463ffffffff1680634ed3885e146100515780636d4ce63c146100ba575b600080fd5b34801561005d57600080fd5b506100b8600480360381019080803590602001908201803590602001908080601f016020809104026020016040519081016040528093929190818152602001838380828437820191505050505050919291929050505061014a565b005b3480156100c657600080fd5b506100cf610164565b6040518080602001828103825283818151815260200191508051906020019080838360005b8381101561010f5780820151818401526020810190506100f4565b50505050905090810190601f16801561013c5780820380516001836020036101000a031916815260200191505b509250505060405180910390f35b8060009080519060200190610160929190610206565b5050565b606060008054600181600116156101000203166002900480601f0160208091040260200160405190810160405280929190818152602001828054600181600116156101000203166002900480156101fc5780601f106101d1576101008083540402835291602001916101fc565b820191906000526020600020905b8154815290600101906020018083116101df57829003601f168201915b5050505050905090565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061024757805160ff1916838001178555610275565b82800160010185558215610275579182015b82811115610274578251825591602001919060010190610259565b5b5090506102829190610286565b5090565b6102a891905b808211156102a457600081600090555060010161028c565b5090565b905600a165627a7a72305820fd74886bedbe51a7f3d834162de4d9af7f276c70133e04fd6776b5fbdd3653000029",
 "nonce":"0x3443a1391c9c29f751e8350304efb310850b8afbaa7738f5e89ddfce79b1d6",
 "to":null,
 "transactionIndex":"0x0",
 "value":"0x0"
 }
],
 "transactionsRoot":"0x516787f85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"
}

getBlockByNumber

To run getBlockByNumber to view block information according to the block number.
Parameter:

	Block number: decimal integer.

	Transaction sign: to set it false by default, the transaction in the block only displays the hash. To set it true, it displays the transaction specific information.

[group:1]> getBlockByNumber 1
{
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
 "logsBloom":"0x00",
 "number":"0x1",
 "parentHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "sealer":"0x0",
 "sealerList":[
 "0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278",
 "2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108",
 "cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd",
 "ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec"
],
 "stateRoot":"0x9711819153f7397ec66a78b02624f70a343b49c60bc2f21a77b977b0ed91cef9",
 "timestamp":"0x1692f119c84",
 "transactions":[
 "0xa14638d47cc679cf6eeb7f36a6d2a30ea56cb8dcf0938719ff45023a7a8edb5d"
],
 "transactionsRoot":"0x516787f85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"
}

getBlockHashByNumber

To run getBlockHashByNumber to get hash through block number
Parameter:

	Block number: decimal integer.

[group:1]> getBlockHashByNumber 1
0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855

getTransactionByHash

To run getTransactionByHash to check the transaction information through transaction hash.
Parameter:

	Transaction hash: the transaction hash starting with 0x.

[group:1]> getTransactionByHash 0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac
{
	"blockHash":"0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02",
	"blockNumber":"0x5a",
	"from":"0x7a5b31b49c6e944e9e1768785b1bc9a96cea0c17",
	"gas":"0x1c9c380",
	"gasPrice":"0x1",
	"hash":"0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac",
	"input":"0x10009562616c696365006a6f726500",
	"nonce":"0x18711fff2ea68dc8b8dce4a3d3845c62a0630766a448bd9453a9127efe6f9e5",
	"to":"0x738eedd873bb9722173194ab990c5b9a6c0beb25",
	"transactionIndex":"0x0",
	"value":"0x0"
}

getTransactionByBlockHashAndIndex

To run getTransactionByBlockHashAndIndex to inquire transaction information through block hash and transaction index.
Parameter:

	Block hash: the transaction hash starting with 0x.

	Transaction index: decimal integer.

[group:1]> getTransactionByBlockHashAndIndex 0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02 0
{
	"blockHash":"0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02",
	"blockNumber":"0x5a",
	"from":"0x7a5b31b49c6e944e9e1768785b1bc9a96cea0c17",
	"gas":"0x1c9c380",
	"gasPrice":"0x1",
	"hash":"0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac",
	"input":"0x10009562616c696365006a6f726500",
	"nonce":"0x18711fff2ea68dc8b8dce4a3d3845c62a0630766a448bd9453a9127efe6f9e5",
	"to":"0x738eedd873bb9722173194ab990c5b9a6c0beb25",
	"transactionIndex":"0x0",
	"value":"0x0"
}

getTransactionByBlockNumberAndIndex

To run getTransactionByBlockNumberAndIndex to inquire transaction information through block number and transaction index.
Parameter:

	Block number: decimal integer.

	Transaction index: decimal integer.

[group:1]> getTransactionByBlockNumberAndIndex 2 0
{
	"blockHash":"0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02",
	"blockNumber":"0x5a",
	"from":"0x7a5b31b49c6e944e9e1768785b1bc9a96cea0c17",
	"gas":"0x1c9c380",
	"gasPrice":"0x1",
	"hash":"0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac",
	"input":"0x10009562616c696365006a6f726500",
	"nonce":"0x18711fff2ea68dc8b8dce4a3d3845c62a0630766a448bd9453a9127efe6f9e5",
	"to":"0x738eedd873bb9722173194ab990c5b9a6c0beb25",
	"transactionIndex":"0x0",
	"value":"0x0"
}

getTransactionReceipt

To run getTransactionReceipt to inquire transaction receipt through transaction hash.
Parameter:

	Transaction hash: the transaction hash starting with 0x.

[group:1]> getTransactionReceipt 0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1
{
 "blockHash":"0x68a1f47ca465acc89edbc24115d1b435cb39fa0def53e8d0ad8090cf1827cafd",
 "blockNumber":"0x5",
 "contractAddress":"0x00",
 "from":"0xc44e7a8a4ae20d6afaa43221c6120b5e1e9f9a72",
 "gasUsed":"0x8be5",
 "logs":[
 {
 "address":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "data":"0x0001",
 "topics":[
 "0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71"
]
 }
],
 "logsBloom":"0x000400400000000000000000000001008000000000000000000000000000000000000004004000",
 "output":"0x0001",
 "status":"0x0",
 "to":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "transactionHash":"0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1",
 "transactionIndex":"0x0"
}

getPendingTransactions

To run getPendingTransactions to inquire the transactions waiting to be processed.

[group:1]> getPendingTransactions
[]

getPendingTxSize

To run getPendingTxSize to inquire the number of transactions waiting to be processed.

[group:1]> getPendingTxSize
0

getCode

To run getCode to inquire contract code according contract address.
Parameter:

	Contract address: The contract address starting with 0x(To deploy contract can get contract address).

[group:1]> getCode 0x97b8c19598fd781aaeb53a1957ef9c8acc59f705
0x60606040526000357c0100900463ffffffff16806366c99139146100465780636d4ce63c14610066575bfe5b341561004e57fe5b610064600480803590602001909190505061008c565b005b341561006e57fe5b61007661028c565b6040518082815260200191505060405180910390f35b8060006001015410806100aa57506002600101548160026001015401105b156100b457610289565b806000600101540360006001018190555080600260010160008282540192505081905550600480548060010182816100ec919061029a565b916000526020600020906004020160005b608060405190810160405280604060405190810160405280600881526020017f3230313730343133008152508152602001600060000160009054906101000a900473ff1673ff168152602001600260000160009054906101000a900473ff1673ff16815260200185815250909190915060008201518160000190805190602001906101ec9291906102cc565b5060208201518160010160006101000a81548173ff021916908373ff16021790555060408201518160020160006101000a81548173ff021916908373ff160217905550606082015181600301555050505b50565b600060026001015490505b90565b8154818355818115116102c7576004028160040283600052602060002091820191016102c6919061034c565b5b505050565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061030d57805160ff191683800117855561033b565b8280016001018555821561033b579182015b8281111561033a57825182559160200191906001019061031f565b5b50905061034891906103d2565b5090565b6103cf91905b808211156103cb57600060008201600061036c91906103f7565b6001820160006101000a81549073ff02191690556002820160006101000a81549073ff0219169055600382016000905550600401610352565b5090565b90565b6103f491905b808211156103f05760008160009055506001016103d8565b5090565b90565b50805460018160011615610100020316600290046000825580601f1061041d575061043c565b601f01602090049060005260206000209081019061043b91906103d2565b5b505600a165627a7a723058203c1f95b4a803493db0120df571d9f5155734152548a532412f2f9fa2dbe1ac730029

getTotalTransactionCount

To run getTotalTransactionCount to inquire the current block number and the total number of transaction.

[group:1]> getTotalTransactionCount
{
	"blockNumber":1,
	"txSum":1,
	"failedTxSum":0
}

deploy

To run deploy to deploy contract. (By default, HelloWorld contract and TableTest.sol are provided for example)
Parameter:

	Contract name: deployment contract name (can be suffixed with .sol). It can name as either HelloWorld or HelloWorld.sol.

To deploy HelloWorld contract
[group:1]> deploy HelloWorld
contract address:0xb3c223fc0bf6646959f254ac4e4a7e355b50a344

To deploy TableTest contract
[group:1]> deploy TableTest
contract address:0x3554a56ea2905f366c345bd44fa374757fb4696a

Note:

	For deploying a user-written contract, we just need to place the solidity contract file in the contracts/solidity/ directory of the console root, and then deploy it. Press the tab key to search for the contract name in the contracts/solidity directory.

	If the contract need to be deployed refers to other contracts or libraries, the reference format is import "./XXX.sol";. The related contracts and libraries are placed in the contracts/solidity/ directory.

	If contract references the library library, the name of library file must start with Lib string to distinguish between the normal contract and the library file. Library files cannot be deployed and called separately.

	**Because FISCO BCOS has removed the transfer payment logic of Ethereum, the solidity contract does not support using payable keyword. This keyword will cause the Java contract file converted by solidity contract to fail at compilation. **

getDeployLog

Run getDeployLog to query the log information of the contract deployed by current console in the group. The log information includes the time of deployment contract, the group ID, the contract name, and the contract address. parameter:

	Log number: optional. To return the latest log information according to the expected value entered. When the actual number is less than the expected value, it returns by the actual number. When the expected value is not given, it returns by the latest 20 log information by default.

[group:1]> getDeployLog 2

2019-05-26 08:37:03 [group:1] HelloWorld 0xc0ce097a5757e2b6e189aa70c7d55770ace47767
2019-05-26 08:37:45 [group:1] TableTest 0xd653139b9abffc3fe07573e7bacdfd35210b5576

[group:1]> getDeployLog 1

2019-05-26 08:37:45 [group:1] TableTest 0xd653139b9abffc3fe07573e7bacdfd35210b5576

Note: If you want to see all the deployment contract log information, please check the deploylog.txt file in the console directory. The file only stores the log records of the last 10,000 deployment contracts.

call

To run call to call contract.
Parameter:

	Contract name: the contract name of the deployment (can be suffixed with .sol).

	Contract address: the address obtained by the deployment contract. The contract address can omit the prefix 0. For example, 0x000ac78 can be abbreviated as 0xac78.

	Contract interface name: the called interface name.

	Parameter: determined by contract interface parameters.

**Parameters are separated by spaces; array parameters need to be enclosed in brackets, such as [1,2,3]; array is a string or byte type and needs to be enclosed in double quotation marks, such as [“alice”, “bob”]. Note that there are no spaces in the array parameters; boolean types are true or false. **

​```text
To call the get interface of HelloWorld to get the name string
[group:1]> call HelloWorld 0x175b16a1299c7af3e2e49b97e68a44734257a35e get

Return code: 0
description: transaction executed successfully
Return message: Success

Return values:
[
 "Hello,World!"
]

To call the set interface of HelloWorld to set the name string
[group:1]> call HelloWorld 0x175b16a1299c7af3e2e49b97e68a44734257a35e set "Hello, FISCO BCOS"
transaction hash: 0x54b7bc73e3b57f684a6b49d2fad41bd8decac55ce021d24a1f298269e56f1ce1

transaction status: 0x0
description: transaction executed successfully

Output
Receipt message: Success
Return message: Success

Event logs
Event: {}

To call the get interface of HelloWorld to get the name string for checking whether the settings take effect
[group:1]> call HelloWorld 0x175b16a1299c7af3e2e49b97e68a44734257a35e get

Return code: 0
description: transaction executed successfully
Return message: Success

Return values:
[
 "Hello,FISCO BCOS"
]

To call the insert interface of TableTest to insert the record, the fields are name, item_id, item_name
[group:1]> call TableTest 0x5f248ad7e917cddc5a4d408cf18169d19c0990e5 insert "fruit" 1 "apple"
transaction hash: 0x64bfab495dc1f50c58d219b331df5a47577aa8afc16be926260238a9b0ec0fbb

transaction status: 0x0
description: transaction executed successfully

Output
Receipt message: Success
Return message: Success

Event logs
Event: {"InsertResult":[1]}

To call TableTest's select interface to inquiry records
[group:1]> [group:1]> call TableTest 0x5f248ad7e917cddc5a4d408cf18169d19c0990e5 select "fruit"

Return code: 0
description: transaction executed successfully
Return message: Success

Return values:
[
 [
 "fruit"
],
 [
 1
],
 [
 "apple"
]
]

Note: TableTest.sol contract codeReference here。

deployByCNS

Run deployByCNS and deploy the contract with CNS. Contracts deployed with CNS can be called directly with the contract name.

Parameter:

	Contract name: deployable contract name.

	Contract version number: deployable contract version number.

To deploy HelloWorld contract 1.0 version
[group:1]> deployByCNS HelloWorld 1.0
contract address:0x3554a56ea2905f366c345bd44fa374757fb4696a

To deploy HelloWorld contract 2.0 version
[group:1]> deployByCNS HelloWorld 2.0
contract address:0x07625453fb4a6459cbf14f5aa4d574cae0f17d92

To deploy TableTest contract
[group:1]> deployByCNS TableTest 1.0
contract address:0x0b33d383e8e93c7c8083963a4ac4a58b214684a8

Note:

	For deploying the contracts compiled by users only needs to place the solidity contract file in the contracts/solidity/ directory of the console root and to deploy it. Press tab key to search for the contract name in the contracts/solidity/ directory.

	If the contract to be deployed references other contracts or libraries, the reference format is import "./XXX.sol";. The related contract and library are placed in the contracts/solidity/ directory.

	**Because FISCO BCOS has removed the transfer payment logic of Ethereum, the solidity contract does not support using payable keyword. This keyword will cause the Java contract file converted by solidity contract to fail at compilation. **

queryCNS

Run queryCNS and query the CNS table record information (the mapping of contract name and contract address) according to the contract name and contract version number (optional parameter).

Parameter:

	Contract name: deployable contract name.

	Contract version number: (optional) deployable contract version number.

[group:1]> queryCNS HelloWorld.sol

| version | address |
| 1.0 | 0x3554a56ea2905f366c345bd44fa374757fb4696a |

[group:1]> queryCNS HelloWorld 1.0

| version | address |
| 1.0 | 0x3554a56ea2905f366c345bd44fa374757fb4696a |

callByCNS

To run deployByCNS and deploy the contract with CNS.
Parameter:

	Contract name and contract version number: The contract name and contract version number are separated by colon, such as HelloWorld:1.0 or HelloWorld.sol:1.0. When the contract version number is omitted like HelloWorld or HelloWorld.sol, the latest version of the contract is called.

	Contract interface name: The called contract interface name.

	Parameter: is determined by the parameter of contract interface. The parameters are separated by spaces, where the string and byte type parameters need to be enclosed in double quotation marks; the array parameters need to be enclosed in brackets, such as [1, 2, 3]. The array is a string or byte type with double quotation marks such as [“alice”, “bob”]; the boolean type is true or false.

To call the HelloWorld contract 1.0 version to set the name string by the set interface
[group:1]> callByCNS HelloWorld:1.0 set "Hello,CNS"
transaction hash:0x80bb37cc8de2e25f6a1cdcb6b4a01ab5b5628082f8da4c48ef1bbc1fb1d28b2d

To call the HelloWorld contract 2.0 version to set the name string by the set interface
[group:1]> callByCNS HelloWorld:2.0 set "Hello,CNS2"
transaction hash:0x43000d14040f0c67ac080d0179b9499b6885d4a1495d3cfd1a79ffb5f2945f64

To call the HelloWorld contract 1.0 version to get the name string by the get interface
[group:1]> callByCNS HelloWorld:1.0 get
Hello,CNS

To call the HelloWorld contract 2.0 version to get the name string by the get interface
[group:1]> callByCNS HelloWorld get
Hello,CNS2

addSealer

To run addSealer to add the node as a consensus node.
Parameter:

	node’s nodeId

[group:1]> addSealer ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{
	"code":0,
	"msg":"success"
}

addObserver

To run addObserver to add the node as an observed node.
Parameter:

	node’s nodeId

[group:1]> addObserver ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{
	"code":0,
	"msg":"success"
}

removeNode

To run removeNode to exit the node. The exit node can be added as a consensus node by the addSealer command or can be added as an observation node by the addObserver command.
Parameter:

	node’s nodeId

[group:1]> removeNode ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{
	"code":0,
	"msg":"success"
}

setSystemConfigByKey

To run setSystemConfigByKey to set the system configuration in key-value pairs. The currently system configuration supports tx_count_limit, tx_gas_limit, rpbft_epoch_sealer_num and rpbft_epoch_block_num. The key name of these two configuration can be complemented by the tab key:

	tx_count_limit: block maximum number of packaged transactions

	tx_gas_limit: The maximum number of gas allowed to be consumed

	rpbft_epoch_sealer_num: rPBFT system configuration, the number of consensus nodes selected in a consensus epoch

	rpbft_epoch_block_num: rPBFT system configuration, number of blocks generated in one consensus epoch

	consensus_timeout: During the PBFT consensus process, the timeout period for each block execution, the default is 3s, the unit is seconds

Parameters:

	key

	value

[group:1]> setSystemConfigByKey tx_count_limit 100
{
	"code":0,
	"msg":"success"
}

getSystemConfigByKey

To run getSystemConfigByKe to inquire the value of the system configuration according to the key.
Parameter:

	key

[group:1]> getSystemConfigByKey tx_count_limit
100

grantUserTableManager

Run grantUserTableManager to grant the account to write to the user table.

parameter:

	table name

	account address

[group:1]> grantUserTableManager t_test 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listUserTableManager

Run listUserTableManager to query the account’s table that has writing permission to the user table.

parameter:

	table name

[group:1]> listUserTableManager t_test

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeUserTableManager

Run revokeUserTableManager to revoke the account’s writing permission from the user table.

parameter:

	table name

	account address

[group:1]> revokeUserTableManager t_test 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantDeployAndCreateManager

Run grantDeployAndCreateManager to grant the account’s permission of deployment contract and user table creation.

parameter:

	account address

[group:1]> grantDeployAndCreateManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listDeployAndCreateManager

Run listDeployAndCreateManager to query the account’s permission of deployment contract and user table creation.

[group:1]> listDeployAndCreateManager

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeDeployAndCreateManager

Run revokeDeployAndCreateManager to revoke the account’s permission of deployment contract and user table creation.

parameter:

	account address

[group:1]> revokeDeployAndCreateManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantNodeManager

Run grantNodeManager to grant the account’s node management permission.

parameter:

	account address

[group:1]> grantNodeManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listNodeManager

Run the listNodeManager to query the list of accounts that have node management.

[group:1]> listNodeManager

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeNodeManager

Run revokeNodeManager to revoke the account’s node management permission.

parameter:

	account address

[group:1]> revokeNodeManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantCNSManager

Run grantCNSManager to grant the account’s permission of using CNS.
parameter:

	account address

[group:1]> grantCNSManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listCNSManager

Run listCNSManager to query the list of accounts that have CNS.

[group:1]> listCNSManager

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeCNSManager

Run revokeCNSManager to revoke the account’s permission of using CNS.
parameter:

	account address

[group:1]> revokeCNSManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantSysConfigManager

Run grantSysConfigManager to grant the account’s permission of modifying system parameter.
parameter:

	account address

[group:1]> grantSysConfigManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listSysConfigManager

Run listSysConfigManager to query the list of accounts that have modified system parameters.

[group:1]> listSysConfigManager

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeSysConfigManager

Run revokeSysConfigManager to revoke the account’s permission of modifying system parameter. parameter:

	account address

[group:1]> revokeSysConfigManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantContractWritePermission

Run grantContractWritePermissio to grant the account the contract write permission. parameters:

	contract address

	account address

[group:1]> grantContractWritePermission 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listContractWritePermission

Run listContractWritePermission to query the account list which have write permission of the contract. parameters:

	contract address

[group:1]> listContractWritePermission 0xc0ce097a5757e2b6e189aa70c7d55770ace47767

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 11 |

revokeContractWritePermission

Run revokeContractWritePermission to Revoke the account the contract write permission. parameters:

	合约地址

	account address

[group:1]> revokeContractWritePermission 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

quit

To run quit, q or exit to exit the console.

quit

[create sql]

Run create sql statement to create a user table in mysql statement form.

Create user table t_demo whose primary key is name and other fields are item_id and item_name
[group:1]> create table t_demo(name varchar, item_id varchar, item_name varchar, primary key(name))
Create 't_demo' Ok.

Note:

	The field types for creating table are all string types. Even if other field types of the database are provided, the field types have to be set according to the string type.

	The primary key field must be specified. For example, to create a t_demo table with the primary key field as name.

	The primary key of the table has different concept from the primary key in the relational database. Here, the value of the primary key is not unique, and the primary key value needs to be passed when the blockchain underlying platform is handling records.

	You can specify the field as the primary key, but the setting fields such as self-incrementing, non-empty, indexing, etc do not work.

desc

Run desc statement to query the field information of the table in mysql statement form.

query the field information of the t_demo table. you can view the primary key name and other field names of the table.

[group:1]> desc t_demo
{
 "key":"name",
 "valueFields":"item_id,item_name"
}

[insert sql]

Run insert sql statement to insert the record in the mysql statement form.

[group:1]> insert into t_demo (name, item_id, item_name) values (fruit, 1, apple1)
Insert OK, 1 row affected.

Note:

	must insert a record sql statement with the primary key field value of the table.

	The enter values with punctuation, spaces, or strings containing letters starting with a number requires double quotation marks, and no more double quotation marks are allowed inside.

[select sql]

Run select sql statement to query the record in mysql statement form.

query the records contain all fields
select * from t_demo where name = fruit
{item_id=1, item_name=apple1, name=fruit}
1 row in set.

query the records contain the specified fields
[group:1]> select name, item_id, item_name from t_demo where name = fruit
{name=fruit, item_id=1, item_name=apple1}
1 row in set.

insert a new record
[group:1]> insert into t_demo values (fruit, 2, apple2)
Insert OK, 1 row affected.

use the keyword 'and' to connect multiple query condition
[group:1]> select * from t_demo where name = fruit and item_name = apple2
{item_id=2, item_name=apple2, name=fruit}
1 row in set.

use limit field to query the first line of records. If the offset is not provided, it is 0 by default.
[group:1]> select * from t_demo where name = fruit limit 1
{item_id=1, item_name=apple1, name=fruit}
1 row in set.

use limit field to query the second line record. The offset is 1
[group:1]> select * from t_demo where name = fruit limit 1,1
{item_id=2, item_name=apple2, name=fruit}
1 rows in set.

Note:

	For querying the statement recording sql, the primary key field value of the table in the where clause must be provided.

	The limit field in the relational database can be used. Providing two parameters which are offset and count.

	The where clause only supports the keyword ‘and’. Other keywords like ‘or’, ‘in’, ‘like’, ‘inner’, ‘join’, ‘union’, subquery, multi-table joint query, and etc. are not supported.

	The enter values with punctuation, spaces, or strings containing letters starting with a number requires double quotation marks, and no more double quotation marks are allowed inside.

[update sql]

Run update sql statement to update the record in mysql statement form.

[group:1]> update t_demo set item_name = orange where name = fruit and item_id = 1
Update OK, 1 row affected.

Note:

	For updating the where clause of recording sql statement, the primary key field value of the table in the where clause must be provided.

	The enter values with punctuation, spaces, or strings containing letters starting with a number requires double quotation marks, and no more double quotation marks are allowed inside.

[delete sql]

Run delete sql statement to delete the record in mysql statement form.

[group:1]> delete from t_demo where name = fruit and item_id = 1
Remove OK, 1 row affected.

Note:

	For deleting the where clause of recording sql statement, the primary key field value of the table in the where clause must be provided.

	The enter values with punctuation, spaces, or strings containing letters starting with a number requires double quotation marks, and no more double quotation marks are allowed inside.

Important

The executing of the freezeContract/unfreezeContract/grantContractStatusManager commands for contract management should specify the private key to start the console for permission.This private key is also the account private key used to deploy the specified contract. So a private key should be specified to launch the console when deploying the contract.

freezeContract

Run freezeContract to freeze contract according contract address.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

[group:1]> freezeContract 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
{
 "code":0,
 "msg":"success"
}

unfreezeContract

Run unfreezeContract to unfreeze contract according contract address.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

[group:1]> unfreezeContract 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
{
 "code":0,
 "msg":"success"
}

grantContractStatusManager

Run grantCNSManager to grant the account’s permission of contract status managememt.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

	Account address: tx.origin. The prefix of 0x is not necessary.

[group:1]> grantContractStatusManager 0x30d2a17b6819f0d77f26dd3a9711ae75c291f7f1 0x965ebffc38b309fa706b809017f360d4f6de909a
{
 "code":0,
 "msg":"success"
}

revokeContractStatusManager

Run revokeContractStatusManager to revoke the contract management authority of the specified authority account for the specified contract. parameter:

	Contract address: The contract address can be obtained by deploying the contract, and the 0x prefix is not required.

	Account address: tx.origin, where 0x prefix is optional.

[group:1]> revokeContractStatusManager 0x30d2a17b6819f0d77f26dd3a9711ae75c291f7f1 0x965ebffc38b309fa706b809017f360d4f6de909a
{
 "code":1,
 "msg":"success"
}

getContractStatus

To run getContractStatus to query contract status according contract address.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

[group:1]> getContractStatus 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
The contract is available.

listContractStatusManager

To run listContractStatusManager to query a list of authorized accounts that can manage a specified contract.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

[group:1]> listContractStatusManager 0x30d2a17b6819f0d77f26dd3a9711ae75c291f7f1
[
 "0x0cc9b73b960323816ac5f52806257184c08b5ac0",
 "0x965ebffc38b309fa706b809017f360d4f6de909a"
]

grantCommitteeMember

grant account with Committee Member permission. Parameters:

	account address

[group:1]> grantCommitteeMember 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a
{
 "code":0,
 "msg":"success"
}

revokeCommitteeMember

revoke account’s Committee Member permission, parameters:

	account address

[group:1]> revokeCommitteeMember 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a
{
 "code":0,
 "msg":"success"
}

listCommitteeMembers

[group:1]> listCommitteeMembers

address	enable_num
0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a	1
0x85961172229aec21694d742a5bd577bedffcfec3	2

updateThreshold

vote to modify the votes threshold, Parameters:

	threshold:[0,99]

[group:1]> updateThreshold 75
{
 "code":0,
 "msg":"success"
}

queryThreshold

query votes threshold

[group:1]> queryThreshold
Effective threshold : 50%

queryCommitteeMemberWeight

[group:1]> queryCommitteeMemberWeight 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a
Account: 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a Weight: 1

updateCommitteeMemberWeight

update Committee Member’s votes. Parameters：

	account address

	votes

[group:1]> updateCommitteeMemberWeight 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a 2
{
 "code":0,
 "msg":"success"
}

grantOperator

grantOperator, committee member’s permission, parameters:

	account address

[group:1]> grantOperator 0x283f5b859e34f7fd2cf136c07579dcc72423b1b2
{
 "code":0,
 "msg":"success"
}

revokeOperator

revokeOperator, committee member’s permission, parameters:

	account address

[group:1]> revokeOperator 0x283f5b859e34f7fd2cf136c07579dcc72423b1b2
{
 "code":0,
 "msg":"success"
}

listOperators

list address who has operator permission。

[group:1]> listOperators

| address | enable_num |
| 0x283f5b859e34f7fd2cf136c07579dcc72423b1b2 | 1 |

queryVotesOfThreshold

Query the voting status of updateThreshold:

[group:1]> queryVotesOfThreshold
The votes of the updateThreshold operation : {"0.100000":[{"block_limit":"10002","origin":"0x2eb1be0f52c0d00f9594a021240ea7fb027d7485"}]}

queryVotesOfMember

Query the voting status of the designated account being elected as a committee member. If no committee member votes, it will return null:

	Account address: The account address being queried

[group:1]> queryVotesOfMember 0xc398d318662aa19487c405a45267ecd60115adec
queried account: 0xc398d318662aa19487c405a45267ecd60115adec
votes:{"grant":[{"block_limit":"10003","origin":"0x2eb1be0f52c0d00f9594a021240ea7fb027d7485"}]}

freezeAccount

Run freezeAccount to freeze account according account address.
Parameter:

	account address: tx.origin. The prefix of 0x is necessary.

[group:1]> freezeAccount 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
{
 "code":0,
 "msg":"success"
}

unfreezeAccount

Run unfreezeAccount to unfreeze account according account address.
Parameter:

	account address: tx.origin. The prefix of 0x is necessary.

[group:1]> unfreezeAccount 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
{
 "code":0,
 "msg":"success"
}

getAccountStatus

Run getAccountStatus to get status of the account according account address.
Parameter:

	account address: tx.origin. The prefix of 0x is necessary.

[group:1]> getAccountStatus 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
The account is available.

getCurrentAccount

Get the current account address.

[group:1]> getCurrentAccount
0x6fad87071f790c3234108f41b76bb99874a6d813

getCryptoType

Get the type of the node ledger and SSL protocol that the current console is connected to.

Note

	The OSCCA-approved cryptography ledger type is ECDSA, the OSCCA-approved cryptography ledger type is SM

	The OpenSSL protocol type is ECDSA, and the OSCCA-approved cryptography SSL protocol type is SM

[group:1]> getCryptoType
ledger crypto type: ECDSA
ssl crypto type: ECDSA

getAvailableConnections

Get the node connection information of the SDK connection.

[group:1]> getAvailableConnections
[
 127.0.0.1:20200,
 127.0.0.1:20201
]

getGroupConnections

From the list of nodes connected to the SDK, filter out the node list information that starts the console currently logged in to the group.

[group:1]> getGroupConnections
[
 127.0.0.1:20200,
 127.0.0.1:20201
]

generateGroup

Dynamically create a new group for the specified node, parameters:

	endPoint: The IP:Port of the blockchain node receiving the request for creating a new group. The information of all the nodes IP:Port connected by the SDK can be obtained through the command getAvailableConnections;

	groupId: The newly created group ID;

	timestamp: The timestamp of the genesis block of the newly created group, can be obtained by the command echo $(($(date'+%s')*1000));

	sealerList: The consensus node list of the newly created group, separated by spaces between multiple consensus node IDs。

An example of creating a new group 2 for the blockchain nodes listening on the port 20200 of this machine is as follows:

Get timestamp
$ echo $(($(date '+%s')*1000))
1590586645000

[group:1]> generateGroup 127.0.0.1:20200 2 1590586645000 b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36
GroupStatus{
 code='0x0',
 message='Group 2 generated successfully',
 status='null'
}

generateGroupFromFile

Create a new group for the specified node list through the new group configuration file. The configuration file specifies the need to create the group node list, the consensus list of the new group, and the creation block timestamp. The group configuration example is group-generate-config. toml is as follows:

The peers to generate the group
[groupPeers]
peers=["127.0.0.1:20200", "127.0.0.1:20201"]

The consensus configuration of the generated group
[consensus]
The sealerList
sealerList=["b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36","11e1be251ca08bb44f36fdeedfaeca40894ff80dfd80084607a75509edeaf2a9c6fee914f1e9efda571611cf4575a1577957edfd2baa9386bd63eb034868625f"]

[genesis]
The genesis timestamp, It is recommended to set to the current utcTime, which must be greater than 0
timestamp = "1590586645000"

The parameters of the generateGroupFromFile command include:

-groupConfigFilePath: group configuration file path, console conf/group-generate-config.toml is the provided group configuration file template, users can copy and modify the configuration template according to the actual scene, and load the modified Group configuration file;

-groupId: The newly created group ID.

[group:1]> generateGroupFromFile conf/group-generate-config.toml 3
* Result of 127.0.0.1:20200:
GroupStatus{
 code='0x0',
 message='Group 3 generated successfully',
 status='null'
}
* Result of 127.0.0.1:20201:
GroupStatus{
 code='0x0',
 message='Group 3 generated successfully',
 status='null'
}

startGroup

Start the group for the specified node, parameters:

	endPoint: The IP:Port of the blockchain node receiving the request for start a new group. The information of all the nodes IP:Port connected by the SDK can be obtained through the command getAvailableConnections;

	groupId: The ID of the group to start.

An example of the console command to start group 2 is as follows:

Get 127.0.0.1:20200 current group list
[group:1]> getGroupList 127.0.0.1:20200
[1]
[group:1]> startGroup 127.0.0.1:20200 2
GroupStatus{
 code='0x0',
 message='Group 2 started successfully',
 status='null'
}
127.0.0.1: After group 2 of 20200 is successfully started, group 2 is added to the group list
[group:1]> getGroupList 127.0.0.1:20200
[1, 2]

stopGroup

Stop the group for the specified node, parameters:

	endPoint: The IP:Port of the blockchain node receiving the request for stop a new group. The information of all the nodes IP:Port connected by the SDK can be obtained through the command getAvailableConnections;

	groupId: The ID of the group to stop.

An example of the console command to stop group 2 is as follows:

Get 127.0.0.1:20200 current group list
[group:1]> getGroupList 127.0.0.1:20200
[1, 2]
[group:1]> stopGroup 127.0.0.1:20200 2
GroupStatus{
 code='0x0',
 message='Group 2 stopped successfully',
 status='null'
}
127.0.0.1: After group 2 of 20200 stops successfully, group 2 is removed from the group list
[group:1]> getGroupList 127.0.0.1:20200
[1]

removeGroup

Remove the group for the specified node, parameters:

	endPoint: The IP:Port of the blockchain node receiving the request for remove a new group. The information of all the nodes IP:Port connected by the SDK can be obtained through the command getAvailableConnections;

	groupId: The ID of the group to remove.

An example of the console command to delete group 2 is as follows:

Delete group 2 of 127.0.0.1:20200
[group:1]> removeGroup 127.0.0.1:20200 2
GroupStatus{
 code='0x0',
 message='Group 2 deleted successfully',
 status='null'
}
After deleting group 2 of 127.0.0.1:20200, try to activate the deleted group, but the activation fails
[group:1]> startGroup 127.0.0.1:20200 2
GroupStatus{
 code='0x5',
 message='Group 2 has been deleted',
 status='null'
}
[group:1]> getGroupList 127.0.0.1:20200
[1]

recoverGroup

Recover the group for the specified node, parameters:

	endPoint: The IP:Port of the blockchain node receiving the request for recover a new group. The information of all the nodes IP:Port connected by the SDK can be obtained through the command getAvailableConnections;

	groupId: The ID of the group to recover.

Get the current group list of 127.0.0.1:20200
[group:1]> getGroupList 127.0.0.1:20200
[1]
Recover group 2 at 127.0.0.1:20200
[group:1]> recoverGroup 127.0.0.1:20200 2
GroupStatus{
 code='0x0',
 message='Group 2 recovered successfully',
 status='null'
}
Start group 2 at 127.0.0.1:20200
[group:1]> startGroup 127.0.0.1:20200 2
GroupStatus{
 code='0x0',
 message='Group 2 started successfully',
 status='null'
}
Get the current group list of 127.0.0.1:20200, add group 2
[group:1]> getGroupList 127.0.0.1:20200
[1, 2]

getBatchReceiptsByBlockNumberAndRange

Get the batched transaction receipts according to the specified block number and transaction range

	blockNumber: (required) The number of the block that contains the required transaction receipts

	from: (optional) The start index of the required transaction receipts (default is 0)

	count: the count of the required transaction receipts (default fetch all the receipts), when set to -1, return all receipts of the block

[group:1]> getBatchReceiptsByBlockNumberAndRange 1
TransactionReceiptsInfo{
 blockInfo=BlockInfo{
 receiptRoot='0x67182babfe1500a8ec442a8b9548e7d0d912af4943c3d549bdf9ed0c76fe8c11',
 blockNumber='0x1',
 blockHash='0x5eb495f6fa457dbcaf6323630a257a65a7085e01087421b7191d8efec69da0c0',
 receiptsCount='0x1'
 },
 transactionReceipts=[
 TransactionReceipt{
 transactionHash='0xa3ce50e3f03d3282e21248172efd1345b9eb15b281791b499f2e6c7bbe464667',
 transactionIndex='0x0',
 root='null',
 blockNumber='null',
 blockHash='null',
 from='0x2eb1be0f52c0d00f9594a021240ea7fb027d7485',
 to='0x0000000000000000000000000000000000001008',
 gasUsed='0x589b',
 contractAddress='0x00',
 logs=[

],
 logsBloom='null',
 status='0x0',
 statusMsg='null',
 input='null',
 output='0x0001',
 txProof=null,
 receiptProof=null
 }
]
}

getBatchReceiptsByBlockHashAndRange

Get the batched transaction receipts according to the specified block hash and transaction range:

	blockHash: (required) The hash of the block that contains the required transaction receipts

	from: (optional) The start index of the required transaction receipts (default is 0)

	count: (optional) The count of the required transaction receipts (default fetch all the receipts), when set to -1, return all receipts of the block

[group:1]> getBatchReceiptsByBlockHashAndRange 0x5eb495f6fa457dbcaf6323630a257a65a7085e01087421b7191d8efec69da0c0
TransactionReceiptsInfo{
 blockInfo=BlockInfo{
 receiptRoot='0x67182babfe1500a8ec442a8b9548e7d0d912af4943c3d549bdf9ed0c76fe8c11',
 blockNumber='0x1',
 blockHash='0x5eb495f6fa457dbcaf6323630a257a65a7085e01087421b7191d8efec69da0c0',
 receiptsCount='0x1'
 },
 transactionReceipts=[
 TransactionReceipt{
 transactionHash='0xa3ce50e3f03d3282e21248172efd1345b9eb15b281791b499f2e6c7bbe464667',
 transactionIndex='0x0',
 root='null',
 blockNumber='null',
 blockHash='null',
 from='0x2eb1be0f52c0d00f9594a021240ea7fb027d7485',
 to='0x0000000000000000000000000000000000001008',
 gasUsed='0x589b',
 contractAddress='0x00',
 logs=[

],
 logsBloom='null',
 status='0x0',
 statusMsg='null',
 input='null',
 output='0x0001',
 txProof=null,
 receiptProof=null
 }
]
}

 Console

Console

Important

	Console 1.x series is based on Web3SDK implementation, after Console 2.6 is based on `Java SDK <../sdk/java_sdk/index.html >`_ implementation, this tutorial is aimed at 1.x version console, for 2.6 and above version console usage documentation please refer to here

	You can view the current console version through the command ./start.sh --version

Console [https://github.com/FISCO-BCOS/console/tree/master-2.0] is an important interactive client tool of FISCO BCOS 2.0. It establishes a connection with blockchain node through Java SDK to request read and write access for blockchain node data. Console has a wealth of commands, including blockchain status inquiry, blockchain nodes management, contracts deployment and calling. In addition, console provides a contract compilation tool that allows users to easily and quickly compile Solidity contract files into Java contract files.

Console command

Console command consists of two parts, the instructions and the parameters related to the instruction:

	Instruction: instruction is an executed operation command, including blockchain status inquiry and contracts deployment and calling. And some of the instructions call the JSON-RPC interface, so they have same name as the JSON-RPC interface.
Use suggestions: instructions can be completed using the tab key, and support for displaying historical input commands by pressing the up and down keys.

	Parameters related to the instruction: parameters required by instruction call interface. Instructions to parameters and parameters to parameters are separated by spaces. The parameters name same as JSON-RPC interface and the explanation of getting information field can be referred to JSON-RPC API.

Common command link:

Contract related commands

	useCNS to deploy and call contract (recommend)

	deploy contract: deployByCNS

	call contract: callByCNS

	query CNS deployment contract information: queryCNS

	deploy and call contract normally

	deploy contract: deploy

	call contract: call

Other commands

	query block number:getBlockNumber

	query Sealer list:getSealerList

	query the information of transaction receipt: getTransactionReceipt

	switch group: switch

Shortcut key

	Ctrl+A: move cursor to the beginning of line

	Ctrl+D: exit console

	Ctrl+E: move cursor to the end of line

	Ctrl+R: search for the history commands have been entered

	↑: browse history commands forward

	↓: browse history commands backward

Console response

When a console command is launched, the console will obtain the result of the command execution and displays the result at the terminal. The execution result is divided into two categories:

	True: The command returns to the true execution result as a string or json.

	False: The command returns to the false execution result as a string or json.

	When console command call the JSON-RPC interface, error code reference here.

	When console command call the Precompiled Service interface, error code reference here.

Console configuration and operation

Important

Precondition：to build FISCO BCOS blockchain, please refer to Building Chain Script or Enterprise Tools.

Get console

$ cd ~ && mkdir fisco && cd fisco
get console
$ curl -#LO https://github.com/FISCO-BCOS/console/releases/download/v2.9.2/download_console.sh && bash download_console.sh -c 1.2.0

Note

	If the script cannot be downloaded for a long time due to network problems, try curl -#LO https://gitee.com/FISCO-BCOS/console/raw/master-2.0/tools/download_console.sh && bash download_console.sh -c 1.2.0

The directory structure is as follows:

|-- apps # console jar package directory
| -- console.jar
|-- lib # related dependent jar package directory
|-- conf
| |-- applicationContext-sample.xml # configuration file
| |-- log4j.properties # log configuration file
|-- contracts # directory where contract locates
| -- solidity # directory where solidity contract locates
| -- HelloWorld.sol # normal contract: HelloWorld contract, is deployable and callable
| -- TableTest.sol # the contracts by using CRUD interface: TableTest contract, is deployable and callable
| -- Table.sol # CRUD interfac contract
| -- console # The file directory of contract abi, bin, java compiled when console deploys the contract
| -- sdk # The file directory of contract abi, bin, java compiled by sol2java.sh script
|-- start.sh # console start script
|-- get_account.sh # account generate script
|-- sol2java.sh # development tool script for compiling solidity contract file as java contract file
|-- replace_solc_jar.sh # a script for replacing the compiling jar package

Configure console

	Blockchain node and certificate configuration:

	To copy the ca.crt, sdk.crt, and sdk.key files in the sdk node directory to the conf directory.

	To rename the applicationContext-sample.xml file in the conf directory to the applicationContext.xml file. To configure the applicationContext.xml file, where the remark content is modified according to the blockchain node configuration. **Hint: If the channel_listen_ip(If the node version is earlier than v2.3.0, check the configuration item listen_ip) set through chain building is 127.0.0.1 or 0.0.0.0 and the channel_port is 20200, the applicationContext.xml configuration is not modified. **

<?xml version="1.0" encoding="UTF-8" ?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx" xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">

 <bean id="encryptType" class="org.fisco.bcos.web3j.crypto.EncryptType">
 <constructor-arg value="0"/> <!-- 0:standard 1:guomi -->
 </bean>

 <bean id="groupChannelConnectionsConfig" class="org.fisco.bcos.channel.handler.GroupChannelConnectionsConfig">
 <property name="allChannelConnections">
 <list> <!-- each group need to configure a bean -->
 <bean id="group1" class="org.fisco.bcos.channel.handler.ChannelConnections">
 <property name="groupId" value="1" /> <!-- groupID -->
 <property name="connectionsStr">
 <list>
 <value>127.0.0.1:20200</value> <!-- IP:channel_port -->
 </list>
 </property>
 </bean>
 </list>
 </property>
 </bean>

 <bean id="channelService" class="org.fisco.bcos.channel.client.Service" depends-on="groupChannelConnectionsConfig">
 <property name="groupId" value="1" /> <!-- to connect to the group with ID 1 -->
 <property name="orgID" value="fisco" />
 <property name="allChannelConnections" ref="groupChannelConnectionsConfig"></property>
 </bean>

</beans>

Configuration detail reference here.

Important

Console configuration instructions

	If the console is configured correctly, but when it is launched on Cent0S system, the following error occurs:

Failed to connect to the node. Please check the node status and the console configuration.

It is because the JDK version that comes with the CentOS system is used (it will cause the console and blockchain node’s authentication to fail). Please download Java 8 version or above from OpenJDK official website [https://jdk.java.net/java-se-ri/8] or Oracle official website [https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html] and install (specific installation steps refer to Appendix). To launch the console after installation.

	When the console configuration file configures multiple node connections in a group, some nodes in the group may leave the group during operation. Therefore, it shows a norm which is when the console is polling, the return information may be inconsistent. It is recommended to configure a node or ensure that the configured nodes are always in the group when using the console, so that the inquired information in the group will keep consistent during the synchronization time.

Configure OSCCA-approved cryptography console

	Blockchain node and certificate configuration:

	To copy the ca.crt, sdk.crt, and sdk.key files in the sdk node directory to the conf directory.

	To rename the applicationContext-sample.xml file in the conf directory to the applicationContext.xml file. To configure the applicationContext.xml file, where the remark content is modified according to the blockchain node configuration. **Hint: If the channel_listen_ip(If the node version is earlier than v2.3.0, check the configuration item listen_ip) set through chain building is 127.0.0.1 or 0.0.0.0 and the channel_port is 20200, the applicationContext.xml configuration is not modified. **

Contract compilation tool

Console provides a special compilation contract tool that allows developers to compile Solidity contract files into Java contract files. Two steps for using the tool:

	To place the Solidity contract file in the contracts/solidity directory.

	Complete the task of compiling contract by running the sol2java.sh script (requires specifying a java package name). For example, there are HelloWorld.sol, TableTest.sol, and Table.sol contracts in the contracts/solidity directory, and we specify the package name as org.com.fisco. The command is as follows:

$ cd ~/fisco/console
$./sol2java.sh org.com.fisco

After running successfully, the directories of Java, ABI and bin will be generated in the console/contracts/sdk directory as shown below.

```bash
|-- abi # to compile the generated abi directory and to store the abi file compiled by solidity contract
|   |-- HelloWorld.abi
|   |-- Table.abi
|   |-- TableTest.abi
|-- bin # to compile the generated bin directory and to store the bin file compiled by solidity contract
|   |-- HelloWorld.bin
|   |-- Table.bin
|   |-- TableTest.bin
|-- java  # to store compiled package path and Java contract file
|   |-- org
|       |-- com
|           |-- fisco
|               |-- HelloWorld.java # the target Java file which is compiled successfully
|               |-- Table.java  # the CRUD interface Java file which is compiled successfully
|               |-- TableTest.java  # the TableTest Java file which is compiled successfully
```


In the java directory, org/com/fisco/ package path directory is generated. In the package path directory, the java contract files HelloWorld.java, TableTest.java and Table.java will be generated. HelloWorld.java and TableTest.java are the java contract files required by the java application.

Launch console

Start the console while the node is running:

$./start.sh
To output the following information to indicate successful launch
===
Welcome to FISCO BCOS console(1.0.3)!
Type 'help' or 'h' for help. Type 'quit' or 'q' to quit console.
 ________ ______ ______ ______ ______ _______ ______ ______ ______
| | \/ \ / \ / \ | \ / \ / \ / \
| $$$$$$$$\$$$$$| $$$$$$| $$$$$$| $$$$$$\ | $$$$$$$| $$$$$$| $$$$$$| $$$$$$\
| $$__ | $$ | $$___\$| $$ \$| $$ | $$ | $$__/ $| $$ \$| $$ | $| $$___\$$
| $$ \ | $$ \$$ \| $$ | $$ | $$ | $$ $| $$ | $$ | $$\$$ \
| $$$$$ | $$ _\$$$$$$| $$ __| $$ | $$ | $$$$$$$| $$ __| $$ | $$_\$$$$$$\
| $$ _| $$_| __| $| $$__/ | $$__/ $$ | $$__/ $| $$__/ | $$__/ $| __| $$
| $$ | $$ \\$$ $$\$$ $$\$$ $$ | $$ $$\$$ $$\$$ $$\$$ $$
 \$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$$ \$$$$$$ \$$$$$$ \$$$$$$

===

Launch script description

To view the current console version:

./start.sh --version
console version: 1.0.3

Account using method

Console loads private key

The console provides the account generation script get_account.sh (for the script tutorial, please refer to Account Management Document. The generated account file is in the accounts directory, and the account file loaded by console must be placed in the directory.

The console startup methods are as follows:

./start.sh
./start.sh groupID
./start.sh groupID -pem pemName
./start.sh groupID -p12 p12Name

Default start

The console randomly generates an account that is started with the group number specified in the console configuration file.

./start.sh

Specify group number to start

The console randomly generates an account that is started with the group number specified on the command line.

./start.sh 2

	Note: The specified group needs to configure ‘bean’ in the console configuration file.

Start with PEM format private key file

	Start with the account of the specified pem file, enter the parameters: group number, -pem, and pem file path

./start.sh 1 -pem accounts/0xebb824a1122e587b17701ed2e512d8638dfb9c88.pem

Start with PKCS12 format private key file

	Start with the account of the specified p12 file, enter the parameters: group number, -p12, and p12 file path

./start.sh 1 -p12 accounts/0x5ef4df1b156bc9f077ee992a283c2dbb0bf045c0.p12
Enter Export Password:

Console command

help

Enter help or h to see all the commands on the console.

[group:1]> help

addObserver Add an observer node.
addSealer Add a sealer node.
call Call a contract by a function and Parameters.
callByCNS Call a contract by a function and Parameters by CNS.
deploy Deploy a contract on blockchain.
deployByCNS Deploy a contract on blockchain by CNS.
desc Description table information.
exit Quit console.
getBlockHeaderByHash Query information about a block header by hash.
getBlockHeaderByNumber Query information about a block header by block number.
getBlockByHash Query information about a block by hash.
getBlockByNumber Query information about a block by block number.
getBlockHashByNumber Query block hash by block number.
getBlockNumber Query the number of most recent block.
getCode Query code at a given address.
getConsensusStatus Query consensus status.
getDeployLog Query the log of deployed contracts.
getGroupList Query group list.
getGroupPeers Query nodeId list for sealer and observer nodes.
getNodeIDList Query nodeId list for all connected nodes.
getNodeVersion Query the current node version.
getNodeInfo Query the specified node information.
getObserverList Query nodeId list for observer nodes.
getPbftView Query the pbft view of node.
getPeers Query peers currently connected to the client.
getPendingTransactions Query pending transactions.
getPendingTxSize Query pending transactions size.
getSealerList Query nodeId list for sealer nodes.
getSyncStatus Query sync status.
getSystemConfigByKey Query a system config value by key.
setSystemConfigByKey Set a system config value by key.
getTotalTransactionCount Query total transaction count.
getTransactionByBlockHashAndIndex Query information about a transaction by block hash and transaction index position.
getTransactionByBlockNumberAndIndex Query information about a transaction by block number and transaction index position.
getTransactionByHash Query information about a transaction requested by transaction hash.
getTransactionReceipt Query the receipt of a transaction by transaction hash.
getTransactionByHashWithProof Query the transaction and transaction proof by transaction hash.
getTransactionReceiptByHashWithProof Query the receipt and transaction receipt proof by transaction hash.
grantCNSManager Grant permission for CNS by address.
grantDeployAndCreateManager Grant permission for deploy contract and create user table by address.
grantNodeManager Grant permission for node configuration by address.
grantSysConfigManager Grant permission for system configuration by address.
grantUserTableManager Grant permission for user table by table name and address.
help(h) Provide help information.
listCNSManager Query permission information for CNS.
listDeployAndCreateManager Query permission information for deploy contract and create user table.
listNodeManager Query permission information for node configuration.
listSysConfigManager Query permission information for system configuration.
listUserTableManager Query permission for user table information.
queryCNS Query CNS information by contract name and contract version.
quit(q) Quit console.
removeNode Remove a node.
revokeCNSManager Revoke permission for CNS by address.
revokeDeployAndCreateManager Revoke permission for deploy contract and create user table by address.
revokeNodeManager Revoke permission for node configuration by address.
revokeSysConfigManager Revoke permission for system configuration by address.
revokeUserTableManager Revoke permission for user table by table name and address.
listContractWritePermission Query the account list which have write permission of the contract.
grantContractWritePermission Grant the account the contract write permission.
revokeContractWritePermission Revoke the account the contract write permission.
grantContractStatusManager Grant contract authorization to the user.
getContractStatus Get the status of the contract.
listContractStatusManager List the authorization of the contract.
grantCommitteeMember Grant the account committee member
revokeCommitteeMember Revoke the account from committee member
listCommitteeMembers List all committee members
grantOperator Grant the account operator
revokeOperator Revoke the operator
listOperators List all operators
updateThreshold Update the threshold
queryThreshold Query the threshold
updateCommitteeMemberWeight Update the committee member weight
queryCommitteeMemberWeight Query the committee member weight
freezeAccount Freeze the account.
unfreezeAccount Unfreeze the account.
getAccountStatus GetAccountStatus of the account.
freezeContract Freeze the contract.
unfreezeContract Unfreeze the contract.
switch(s) Switch to a specific group by group ID.
[create sql] Create table by sql.
[delete sql] Remove records by sql.
[insert sql] Insert records by sql.
[select sql] Select records by sql.
[update sql] Update records by sql.

**Note: **

	help shows the meaning of each command: command and command description

	for instructions on how to use specific commands, enter the command -h or --help to view them. E.g:

[group:1]> getBlockByNumber -h
Query information about a block by block number.
Usage: getBlockByNumber blockNumber [boolean]
blockNumber -- Integer of a block number, from 0 to 2147483647.
boolean -- (optional) If true it returns the full transaction objects, if false only the hashes of the transactions.

switch

To run switch or s to switch to the specified group. The group number is displayed in front of the command prompt.

[group:1]> switch 2
Switched to group 2.

[group:2]>

**Note: ** For the group that needs to be switched, make sure that the information of the group is configured in applicationContext.xml (the initial state of this configuration file only provides the group 1 configuration) in the console/conf directory, the configured node ID and port in the group are correct, and the node is running normally.

getBlockNumber

To run getBlockNumber to view block number.

[group:1]> getBlockNumber
90

getSealerList

To run getSealerList to view the list of consensus nodes.

[group:1]> getSealerList
[
 0c0bbd25152d40969d3d3cee3431fa28287e07cff2330df3258782d3008b876d146ddab97eab42796495bfbb281591febc2a0069dcc7dfe88c8831801c5b5801,
 10b3a2d4b775ec7f3c2c9e8dc97fa52beb8caab9c34d026db9b95a72ac1d1c1ad551c67c2b7fdc34177857eada75836e69016d1f356c676a6e8b15c45fc9bc34,
 622af37b2bd29c60ae8f15d467b67c0a7fe5eb3e5c63fdc27a0ee8066707a25afa3aa0eb5a3b802d3a8e5e26de9d5af33806664554241a3de9385d3b448bcd73
]

getObserverList

To run getSealerList to view the list of observer nodes.

[group:1]> getObserverList
[
 037c255c06161711b6234b8c0960a6979ef039374ccc8b723afea2107cba3432dbbc837a714b7da20111f74d5a24e91925c773a72158fa066f586055379a1772
]

getNodeIDList

To run getNodeIDList to view the nodes and the list of nodeIds connected to p2p nodes.

[group:1]> getNodeIDList
[
 41285429582cbfe6eed501806391d2825894b3696f801e945176c7eb2379a1ecf03b36b027d72f480e89d15bacd43462d87efd09fb0549e0897f850f9eca82ba,
 87774114e4a496c68f2482b30d221fa2f7b5278876da72f3d0a75695b81e2591c1939fc0d3fadb15cc359c997bafc9ea6fc37345346acaf40b6042b5831c97e1,
 29c34347a190c1ec0c4507c6eed6a5bcd4d7a8f9f54ef26da616e81185c0af11a8cea4eacb74cf6f61820292b24bc5d9e426af24beda06fbd71c217960c0dff0,
 d5b3a9782c6aca271c9642aea391415d8b258e3a6d92082e59cc5b813ca123745440792ae0b29f4962df568f8ad58b75fc7cea495684988e26803c9c5198f3f8
]

getPbftView

To run getPbftView to view the pbft viewgraph.

[group:1]> getPbftView
2730

getConsensusStatus

To run getConsensusStatus to view the consensus status.

[group:1]> getConsensusStatus
[
 {
 "id": 1,
 "jsonrpc": "2.0",
 "result": [
 {
 "accountType": 1,
 "allowFutureBlocks": true,
 "cfgErr": false,
 "connectedNodes": 3,
 "consensusedBlockNumber": 38207,
 "currentView": 54477,
 "groupId": 1,
 "highestblockHash": "0x19a16e8833e671aa11431de589c866a6442ca6c8548ba40a44f50889cd785069",
 "highestblockNumber": 38206,
 "leaderFailed": false,
 "max_faulty_leader": 1,
 "nodeId": "f72648fe165da17a889bece08ca0e57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4337eedd142dca026abc2def632f6e456f80230902f93e2bea13",
 "nodeNum": 4,
 "node_index": 3,
 "omitEmptyBlock": true,
 "protocolId": 65544,
 "sealer.0": "6a99f357ecf8a001e03b68aba66f68398ee08f3ce0f0147e777ec77995369aac470b8c9f0f85f91ebb58a98475764b7ca1be8e37637dd6cb80b3355749636a3d",
 "sealer.1": "8a453f1328c80b908b2d02ba25adca6341b16b16846d84f903c4f4912728c6aae1050ce4f24cd9c13e010ce922d3393b846f6f5c42f6af59c65a814de733afe4",
 "sealer.2": "ed483837e73ee1b56073b178f5ac0896fa328fc0ed418ae3e268d9e9109721421ec48d68f28d6525642868b40dd26555c9148dbb8f4334ca071115925132889c",
 "sealer.3": "f72648fe165da17a889bece08ca0e57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4337eedd142dca026abc2def632f6e456f80230902f93e2bea13",
 "toView": 54477
 },
 [
 {
 "nodeId": "6a99f357ecf8a001e03b68aba66f68398ee08f3ce0f0147e777ec77995369aac470b8c9f0f85f91ebb58a98475764b7ca1be8e37637dd6cb80b3355749636a3d",
 "view": 54474
 },
 {
 "nodeId": "8a453f1328c80b908b2d02ba25adca6341b16b16846d84f903c4f4912728c6aae1050ce4f24cd9c13e010ce922d3393b846f6f5c42f6af59c65a814de733afe4",
 "view": 54475
 },
 {
 "nodeId": "ed483837e73ee1b56073b178f5ac0896fa328fc0ed418ae3e268d9e9109721421ec48d68f28d6525642868b40dd26555c9148dbb8f4334ca071115925132889c",
 "view": 54476
 },
 {
 "nodeId": "f72648fe165da17a889bece08ca0e57862cb979c4e3661d6a77bcc2de85cb766af5d299fec8a4337eedd142dca026abc2def632f6e456f80230902f93e2bea13",
 "view": 54477
 }
]
]
}
]

getSyncStatus

To run getSyncStatus to view the synchronization status.

[group:1]> getSyncStatus
{
 "blockNumber":5,
 "genesisHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "isSyncing":false,
 "latestHash":"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
 "nodeId":"cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd",
 "peers":[
 {
 "blockNumber":5,
 "genesisHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "latestHash":"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
 "nodeId":"0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278"
 },
 {
 "blockNumber":5,
 "genesisHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "latestHash":"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
 "nodeId":"2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108"
 },
 {
 "blockNumber":5,
 "genesisHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "latestHash":"0xb99703130e24702d3b580111b0cf4e39ff60ac530561dd9eb0678d03d7acce1d",
 "nodeId":"ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec"
 }
],
 "protocolId":265,
 "txPoolSize":"0"
}

getNodeVersion

To run getNodeVersion to view the node version.

[group:1]> getNodeVersion
{
 "Build Time":"20200619 06:32:10",
 "Build Type":"Linux/clang/Release",
 "Chain Id":"1",
 "FISCO-BCOS Version":"2.5.0",
 "Git Branch":"HEAD",
 "Git Commit Hash":"72c6d770e5cf0f4197162d0e26005ec03d30fcfe",
 "Supported Version":"2.5.0"
}

getPeers

To run getPeers to view the peers of node.

[group:1]> getPeers
[
	{
		"IPAndPort":"127.0.0.1:50723",
		"nodeId":"8718579e9a6fee647b3d7404d59d66749862aeddef22e6b5abaafe1af6fc128fc33ed5a9a105abddab51e12004c6bfe9083727a1c3a22b067ddbaac3fa349f7f",
		"Topic":[

]
	},
	{
		"IPAndPort":"127.0.0.1:50719",
		"nodeId":"697e81e512cffc55fc9c506104fb888a9ecf4e29eabfef6bb334b0ebb6fc4ef8fab60eb614a0f2be178d0b5993464c7387e2b284235402887cdf640f15cb2b4a",
		"Topic":[

]
	},
	{
		"IPAndPort":"127.0.0.1:30304",
		"nodeId":"8fc9661baa057034f10efacfd8be3b7984e2f2e902f83c5c4e0e8a60804341426ace51492ffae087d96c0b968bd5e92fa53ea094ace8d1ba72de6e4515249011",
		"Topic":[

]
	}
]

getGroupPeers

To run getGroupPeers to view the list of consensus and observer node of the group where the node is located.

[group:1]> getGroupPeers
[
 cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd,
 ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec,
 0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278,
 2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108
]

getGroupList

To run getGroupList to view the list of group:

[group:1]> getGroupList
[1]

getBlockHeaderByHash

Run getBlockHeaderByHash to query the block header information based on the block hash.

parameter:

	Block hash: the hash value of the block starting with 0x

	Signature list flag: The default is false, that is, the block signature list information is not displayed in the block header information, and if set to true, the block signature list is displayed.

[group:1]> getBlockHeaderByHash 0x99576e7567d258bd6426ddaf953ec0c953778b2f09a078423103c6555aa4362d
{
 "dbHash":"0x00",
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0x99576e7567d258bd6426ddaf953ec0c953778b2f09a078423103c6555aa4362d",
 "logsBloom":"0x00",
 "number":1,
 "parentHash":"0x4f6394763c33c1709e5a72b202ad4d7a3b8152de3dc698cef6f675ecdaf20a3b",
 "receiptsRoot":"0x69a04fa6073e4fc0947bac7ee6990e788d1e2c5ec0fe6c2436d0892e7f3c09d2",
 "sealer":"0x2",
 "sealerList":[
 "11e1be251ca08bb44f36fdeedfaeca40894ff80dfd80084607a75509edeaf2a9c6fee914f1e9efda571611cf4575a1577957edfd2baa9386bd63eb034868625f",
 "78a313b426c3de3267d72b53c044fa9fe70c2a27a00af7fea4a549a7d65210ed90512fc92b6194c14766366d434235c794289d66deff0796f15228e0e14a9191",
 "95b7ff064f91de76598f90bc059bec1834f0d9eeb0d05e1086d49af1f9c2f321062d011ee8b0df7644bd54c4f9ca3d8515a3129bbb9d0df8287c9fa69552887e",
 "b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36"
],
 "stateRoot":"0x00",
 "timestamp":"0x173ad8703d6",
 "transactionsRoot":"0xb563f70188512a085b5607cac0c35480336a566de736c83410a062c9acc785ad"
}

getBlockHeaderByNumber

Run getBlockHeaderByNumber to query the block header information according to the block height.
parameter:

	Block height

	Signature list flag: The default is false, that is, the block signature list information is not displayed in the block header information, and if set to true, the block signature list is displayed.

[group:1]> getBlockHeaderByNumber 1 true
{
 "dbHash":"0x00",
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0x99576e7567d258bd6426ddaf953ec0c953778b2f09a078423103c6555aa4362d",
 "logsBloom":"0x00",
 "number":1,
 "parentHash":"0x4f6394763c33c1709e5a72b202ad4d7a3b8152de3dc698cef6f675ecdaf20a3b",
 "receiptsRoot":"0x69a04fa6073e4fc0947bac7ee6990e788d1e2c5ec0fe6c2436d0892e7f3c09d2",
 "sealer":"0x2",
 "sealerList":[
 "11e1be251ca08bb44f36fdeedfaeca40894ff80dfd80084607a75509edeaf2a9c6fee914f1e9efda571611cf4575a1577957edfd2baa9386bd63eb034868625f",
 "78a313b426c3de3267d72b53c044fa9fe70c2a27a00af7fea4a549a7d65210ed90512fc92b6194c14766366d434235c794289d66deff0796f15228e0e14a9191",
 "95b7ff064f91de76598f90bc059bec1834f0d9eeb0d05e1086d49af1f9c2f321062d011ee8b0df7644bd54c4f9ca3d8515a3129bbb9d0df8287c9fa69552887e",
 "b8acb51b9fe84f88d670646be36f31c52e67544ce56faf3dc8ea4cf1b0ebff0864c6b218fdcd9cf9891ebd414a995847911bd26a770f429300085f37e1131f36"
],
 "signatureList":[
 {
 "index":"0x3",
 "signature":"0xb5b41e49c0b2bf758322ecb5c86dc3a3a0f9b98891b5bbf50c8613a241f05f595ce40d0bb212b6faa32e98546754835b057b9be0b29b9d0c8ae8b38f7487b8d001"
 },
 {
 "index":"0x0",
 "signature":"0x411cb93f816549eba82c3bf8c03fa637036dcdee65667b541d0da06a6eaea80d16e6ca52bf1b08f77b59a834bffbc124c492ea7a1601d0c4fb257d97dc97cea600"
 },
 {
 "index":"0x1",
 "signature":"0xea3c27c2a1486c7942c41c4dc8f15fbf9a668aff2ca40f00701d73fa659a14317d45d74372d69d43ced8e81f789e48140e7fa0c61997fa7cde514c654ef9f26d00"
 }
],
 "stateRoot":"0x00",
 "timestamp":"0x173ad8703d6",
 "transactionsRoot":"0xb563f70188512a085b5607cac0c35480336a566de736c83410a062c9acc785ad"
}

getBlockByHash

To run getBlockByHash to view block information according to the block hash.
Parameter:

	Block hash: The hash starting with 0x.

	Transaction sign: to set it false by default, the transaction in the block only displays the hash. To set it true, it displays the transaction specific information.

[group:1]> getBlockByHash 0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855
{
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
 "logsBloom":"0x00",
 "number":"0x1",
 "parentHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "sealer":"0x0",
 "sealerList":[
 "0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278",
 "2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108",
 "cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd",
 "ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec"
],
 "stateRoot":"0x9711819153f7397ec66a78b02624f70a343b49c60bc2f21a77b977b0ed91cef9",
 "timestamp":"0x1692f119c84",
 "transactions":[
 "0xa14638d47cc679cf6eeb7f36a6d2a30ea56cb8dcf0938719ff45023a7a8edb5d"
],
 "transactionsRoot":"0x516787f85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"
}
[group:1]> getBlockByHash 0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855 true
{
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
 "logsBloom":"0x00",
 "number":"0x1",
 "parentHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "sealer":"0x0",
 "sealerList":[
 "0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278",
 "2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108",
 "cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd",
 "ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec"
],
 "stateRoot":"0x9711819153f7397ec66a78b02624f70a343b49c60bc2f21a77b977b0ed91cef9",
 "timestamp":"0x1692f119c84",
 "transactions":[
 {
 "blockHash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
 "blockNumber":"0x1",
 "from":"0x7234c32327795e4e612164e3442cfae0d445b9ad",
 "gas":"0x1c9c380",
 "gasPrice":"0x1",
 "hash":"0xa14638d47cc679cf6eeb7f36a6d2a30ea56cb8dcf0938719ff45023a7a8edb5d",
 "input":"0x608060405234801561001057600080fd5b506040805190810160405280600d81526020017f48656c6c6f2c20576f726c6421000000000000000000000000000000000000008152506000908051906020019061005c929190610062565b50610107565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106100a357805160ff19168380011785556100d1565b828001600101855582156100d1579182015b828111156100d05782518255916020019190600101906100b5565b5b5090506100de91906100e2565b5090565b61010491905b808211156101005760008160009055506001016100e8565b5090565b90565b6102d7806101166000396000f30060806040526004361061004c576000357c0100900463ffffffff1680634ed3885e146100515780636d4ce63c146100ba575b600080fd5b34801561005d57600080fd5b506100b8600480360381019080803590602001908201803590602001908080601f016020809104026020016040519081016040528093929190818152602001838380828437820191505050505050919291929050505061014a565b005b3480156100c657600080fd5b506100cf610164565b6040518080602001828103825283818151815260200191508051906020019080838360005b8381101561010f5780820151818401526020810190506100f4565b50505050905090810190601f16801561013c5780820380516001836020036101000a031916815260200191505b509250505060405180910390f35b8060009080519060200190610160929190610206565b5050565b606060008054600181600116156101000203166002900480601f0160208091040260200160405190810160405280929190818152602001828054600181600116156101000203166002900480156101fc5780601f106101d1576101008083540402835291602001916101fc565b820191906000526020600020905b8154815290600101906020018083116101df57829003601f168201915b5050505050905090565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061024757805160ff1916838001178555610275565b82800160010185558215610275579182015b82811115610274578251825591602001919060010190610259565b5b5090506102829190610286565b5090565b6102a891905b808211156102a457600081600090555060010161028c565b5090565b905600a165627a7a72305820fd74886bedbe51a7f3d834162de4d9af7f276c70133e04fd6776b5fbdd3653000029",
 "nonce":"0x3443a1391c9c29f751e8350304efb310850b8afbaa7738f5e89ddfce79b1d6",
 "to":null,
 "transactionIndex":"0x0",
 "value":"0x0"
 }
],
 "transactionsRoot":"0x516787f85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"
}

getBlockByNumber

To run getBlockByNumber to view block information according to the block number.
Parameter:

	Block number: decimal integer.

	Transaction sign: to set it false by default, the transaction in the block only displays the hash. To set it true, it displays the transaction specific information.

[group:1]> getBlockByNumber 1
{
 "extraData":[

],
 "gasLimit":"0x0",
 "gasUsed":"0x0",
 "hash":"0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855",
 "logsBloom":"0x00",
 "number":"0x1",
 "parentHash":"0xeccad5274949b9d25996f7a96b89c0ac5c099eb9b72cc00d65bc6ef09f7bd10b",
 "sealer":"0x0",
 "sealerList":[
 "0471101bcf033cd9e0cbd6eef76c144e6eff90a7a0b1847b5976f8ba32b2516c0528338060a4599fc5e3bafee188bca8ccc529fbd92a760ef57ec9a14e9e4278",
 "2b08375e6f876241b2a1d495cd560bd8e43265f57dc9ed07254616ea88e371dfa6d40d9a702eadfd5e025180f9d966a67f861da214dd36237b58d72aaec2e108",
 "cf93054cf524f51c9fe4e9a76a50218aaa7a2ca6e58f6f5634f9c2884d2e972486c7fe1d244d4b49c6148c1cb524bcc1c99ee838bb9dd77eb42f557687310ebd",
 "ed1c85b815164b31e895d3f4fc0b6e3f0a0622561ec58a10cc8f3757a73621292d88072bf853ac52f0a9a9bbb10a54bdeef03c3a8a42885fe2467b9d13da9dec"
],
 "stateRoot":"0x9711819153f7397ec66a78b02624f70a343b49c60bc2f21a77b977b0ed91cef9",
 "timestamp":"0x1692f119c84",
 "transactions":[
 "0xa14638d47cc679cf6eeb7f36a6d2a30ea56cb8dcf0938719ff45023a7a8edb5d"
],
 "transactionsRoot":"0x516787f85980a86fd04b0e9ce82a1a75950db866e8cdf543c2cae3e4a51d91b7"
}

getBlockHashByNumber

To run getBlockHashByNumber to get hash through block number
Parameter:

	Block number: decimal integer.

[group:1]> getBlockHashByNumber 1
0xf6afbcc3ec9eb4ac2c2829c2607e95ea0fa1be914ca1157436b2d3c5f1842855

getTransactionByHash

To run getTransactionByHash to check the transaction information through transaction hash.
Parameter:

	Transaction hash: the transaction hash starting with 0x.

[group:1]> getTransactionByHash 0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac
{
	"blockHash":"0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02",
	"blockNumber":"0x5a",
	"from":"0x7a5b31b49c6e944e9e1768785b1bc9a96cea0c17",
	"gas":"0x1c9c380",
	"gasPrice":"0x1",
	"hash":"0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac",
	"input":"0x10009562616c696365006a6f726500",
	"nonce":"0x18711fff2ea68dc8b8dce4a3d3845c62a0630766a448bd9453a9127efe6f9e5",
	"to":"0x738eedd873bb9722173194ab990c5b9a6c0beb25",
	"transactionIndex":"0x0",
	"value":"0x0"
}

getTransactionByBlockHashAndIndex

To run getTransactionByBlockHashAndIndex to inquire transaction information through block hash and transaction index.
Parameter:

	Block hash: the transaction hash starting with 0x.

	Transaction index: decimal integer.

[group:1]> getTransactionByBlockHashAndIndex 0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02 0
{
	"blockHash":"0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02",
	"blockNumber":"0x5a",
	"from":"0x7a5b31b49c6e944e9e1768785b1bc9a96cea0c17",
	"gas":"0x1c9c380",
	"gasPrice":"0x1",
	"hash":"0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac",
	"input":"0x10009562616c696365006a6f726500",
	"nonce":"0x18711fff2ea68dc8b8dce4a3d3845c62a0630766a448bd9453a9127efe6f9e5",
	"to":"0x738eedd873bb9722173194ab990c5b9a6c0beb25",
	"transactionIndex":"0x0",
	"value":"0x0"
}

getTransactionByBlockNumberAndIndex

To run getTransactionByBlockNumberAndIndex to inquire transaction information through block number and transaction index.
Parameter:

	Block number: decimal integer.

	Transaction index: decimal integer.

[group:1]> getTransactionByBlockNumberAndIndex 2 0
{
	"blockHash":"0x77e5b6d799edabaeae654ac5cea9baacd6f8e7ace33531d40c7ed65192de1f02",
	"blockNumber":"0x5a",
	"from":"0x7a5b31b49c6e944e9e1768785b1bc9a96cea0c17",
	"gas":"0x1c9c380",
	"gasPrice":"0x1",
	"hash":"0xed82e2cda98db8614677aba1fa8a795820bd7f68a5919a2f85018ba8c10952ac",
	"input":"0x10009562616c696365006a6f726500",
	"nonce":"0x18711fff2ea68dc8b8dce4a3d3845c62a0630766a448bd9453a9127efe6f9e5",
	"to":"0x738eedd873bb9722173194ab990c5b9a6c0beb25",
	"transactionIndex":"0x0",
	"value":"0x0"
}

getTransactionReceipt

To run getTransactionReceipt to inquire transaction receipt through transaction hash.
Parameter:

	Transaction hash: the transaction hash starting with 0x.

	contract name: Optional. The contract name generated by transaction receipt. To use this parameter can parse and output the event log in the transaction receipt.

	event name: optional. Event Name. To specify this parameter to output the specified event log information.

	event index number: optional. Event index. To specify this parameter to output the event log information of the specified event index location.

[group:1]> getTransactionReceipt 0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1
{
 "blockHash":"0x68a1f47ca465acc89edbc24115d1b435cb39fa0def53e8d0ad8090cf1827cafd",
 "blockNumber":"0x5",
 "contractAddress":"0x00",
 "from":"0xc44e7a8a4ae20d6afaa43221c6120b5e1e9f9a72",
 "gasUsed":"0x8be5",
 "logs":[
 {
 "address":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "data":"0x0001",
 "topics":[
 "0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71"
]
 }
],
 "logsBloom":"0x000400400000000000000000000001008000000000000000000000000000000000000004004000",
 "output":"0x0001",
 "status":"0x0",
 "to":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "transactionHash":"0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1",
 "transactionIndex":"0x0"
}

[group:1]> getTransactionReceipt 0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1 TableTest
{
 "blockHash":"0x68a1f47ca465acc89edbc24115d1b435cb39fa0def53e8d0ad8090cf1827cafd",
 "blockNumber":"0x5",
 "contractAddress":"0x00",
 "from":"0xc44e7a8a4ae20d6afaa43221c6120b5e1e9f9a72",
 "gasUsed":"0x8be5",
 "logs":[
 {
 "address":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "data":"0x0001",
 "topics":[
 "0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71"
]
 }
],
 "logsBloom":"0x000400400000000000000000000001008000000000000000000000000000000000000004004000",
 "output":"0x0001",
 "status":"0x0",
 "to":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "transactionHash":"0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1",
 "transactionIndex":"0x0"
}

Event logs

InsertResult index: 0
count = 1

[group:1]> getTransactionReceipt 0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1 TableTest InsertResult
{
 "blockHash":"0x68a1f47ca465acc89edbc24115d1b435cb39fa0def53e8d0ad8090cf1827cafd",
 "blockNumber":"0x5",
 "contractAddress":"0x00",
 "from":"0xc44e7a8a4ae20d6afaa43221c6120b5e1e9f9a72",
 "gasUsed":"0x8be5",
 "logs":[
 {
 "address":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "data":"0x0001",
 "topics":[
 "0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71"
]
 }
],
 "logsBloom":"0x000400400000000000000000000001008000000000000000000000000000000000000004004000",
 "output":"0x0001",
 "status":"0x0",
 "to":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "transactionHash":"0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1",
 "transactionIndex":"0x0"
}

Event logs

InsertResult index: 0
count = 1

[group:1]> getTransactionReceipt 0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1 TableTest InsertResult 0
{
 "blockHash":"0x68a1f47ca465acc89edbc24115d1b435cb39fa0def53e8d0ad8090cf1827cafd",
 "blockNumber":"0x5",
 "contractAddress":"0x00",
 "from":"0xc44e7a8a4ae20d6afaa43221c6120b5e1e9f9a72",
 "gasUsed":"0x8be5",
 "logs":[
 {
 "address":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "data":"0x0001",
 "topics":[
 "0x66f7705280112a4d1145399e0414adc43a2d6974b487710f417edcf7d4a39d71"
]
 }
],
 "logsBloom":"0x000400400000000000000000000001008000000000000000000000000000000000000004004000",
 "output":"0x0001",
 "status":"0x0",
 "to":"0xd653139b9abffc3fe07573e7bacdfd35210b5576",
 "transactionHash":"0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1",
 "transactionIndex":"0x0"
}

Event logs

InsertResult index: 0
count = 1

getPendingTransactions

To run getPendingTransactions to inquire the transactions waiting to be processed.

[group:1]> getPendingTransactions
[]

getPendingTxSize

To run getPendingTxSize to inquire the number of transactions waiting to be processed.

[group:1]> getPendingTxSize
0

getCode

To run getCode to inquire contract code according contract address.
Parameter:

	Contract address: The contract address starting with 0x(To deploy contract can get contract address).

[group:1]> getCode 0x97b8c19598fd781aaeb53a1957ef9c8acc59f705
0x60606040526000357c0100900463ffffffff16806366c99139146100465780636d4ce63c14610066575bfe5b341561004e57fe5b610064600480803590602001909190505061008c565b005b341561006e57fe5b61007661028c565b6040518082815260200191505060405180910390f35b8060006001015410806100aa57506002600101548160026001015401105b156100b457610289565b806000600101540360006001018190555080600260010160008282540192505081905550600480548060010182816100ec919061029a565b916000526020600020906004020160005b608060405190810160405280604060405190810160405280600881526020017f3230313730343133008152508152602001600060000160009054906101000a900473ff1673ff168152602001600260000160009054906101000a900473ff1673ff16815260200185815250909190915060008201518160000190805190602001906101ec9291906102cc565b5060208201518160010160006101000a81548173ff021916908373ff16021790555060408201518160020160006101000a81548173ff021916908373ff160217905550606082015181600301555050505b50565b600060026001015490505b90565b8154818355818115116102c7576004028160040283600052602060002091820191016102c6919061034c565b5b505050565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1061030d57805160ff191683800117855561033b565b8280016001018555821561033b579182015b8281111561033a57825182559160200191906001019061031f565b5b50905061034891906103d2565b5090565b6103cf91905b808211156103cb57600060008201600061036c91906103f7565b6001820160006101000a81549073ff02191690556002820160006101000a81549073ff0219169055600382016000905550600401610352565b5090565b90565b6103f491905b808211156103f05760008160009055506001016103d8565b5090565b90565b50805460018160011615610100020316600290046000825580601f1061041d575061043c565b601f01602090049060005260206000209081019061043b91906103d2565b5b505600a165627a7a723058203c1f95b4a803493db0120df571d9f5155734152548a532412f2f9fa2dbe1ac730029

getTotalTransactionCount

To run getTotalTransactionCount to inquire the current block number and the total number of transaction.

[group:1]> getTotalTransactionCount
{
	"blockNumber":1,
	"txSum":1,
	"failedTxSum":0
}

deploy

To run deploy to deploy contract. (By default, HelloWorld contract and TableTest.sol are provided for example)
Parameter:

	Contract name: deployment contract name (can be suffixed with .sol). It can name as either HelloWorld or HelloWorld.sol.

To deploy HelloWorld contract
[group:1]> deploy HelloWorld.sol
contract address:0xb3c223fc0bf6646959f254ac4e4a7e355b50a344

To deploy TableTest contract
[group:1]> deploy TableTest.sol
contract address:0x3554a56ea2905f366c345bd44fa374757fb4696a

Note:

	For deploying a user-written contract, we just need to place the solidity contract file in the contracts/solidity/ directory of the console root, and then deploy it. Press the tab key to search for the contract name in the contracts/solidity directory.

	If the contract need to be deployed refers to other contracts or libraries, the reference format is import "./XXX.sol";. The related contracts and libraries are placed in the contracts/solidity/ directory.

	If contract references the library library, the name of library file must start with Lib string to distinguish between the normal contract and the library file. Library files cannot be deployed and called separately.

	**Because FISCO BCOS has removed the transfer payment logic of Ethereum, the solidity contract does not support using payable keyword. This keyword will cause the Java contract file converted by solidity contract to fail at compilation. **

getDeployLog

Run getDeployLog to query the log information of the contract deployed by current console in the group. The log information includes the time of deployment contract, the group ID, the contract name, and the contract address. parameter:

	Log number: optional. To return the latest log information according to the expected value entered. When the actual number is less than the expected value, it returns by the actual number. When the expected value is not given, it returns by the latest 20 log information by default.

[group:1]> getDeployLog 2

2019-05-26 08:37:03 [group:1] HelloWorld 0xc0ce097a5757e2b6e189aa70c7d55770ace47767
2019-05-26 08:37:45 [group:1] TableTest 0xd653139b9abffc3fe07573e7bacdfd35210b5576

[group:1]> getDeployLog 1

2019-05-26 08:37:45 [group:1] TableTest 0xd653139b9abffc3fe07573e7bacdfd35210b5576

Note: If you want to see all the deployment contract log information, please check the deploylog.txt file in the console directory. The file only stores the log records of the last 10,000 deployment contracts.

call

To run call to call contract.
Parameter:

	Contract name: the contract name of the deployment (can be suffixed with .sol).

	Contract address: the address obtained by the deployment contract. The contract address can omit the prefix 0. For example, 0x000ac78 can be abbreviated as 0xac78.

	Contract interface name: the called interface name.

	Parameter: determined by contract interface parameters.

**Parameters are separated by spaces. The string and byte type parameters need to be enclosed in double quotes; array parameters need to be enclosed in brackets, such as [1,2,3]; array is a string or byte type and needs to be enclosed in double quotation marks, such as [“alice”, “bob”]. Note that there are no spaces in the array parameters; boolean types are true or false. **

​```text
To call the get interface of HelloWorld to get the name string
[group:1]> call HelloWorld.sol 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 get
Hello, World!

To call the set interface of HelloWorld to set the name string
[group:1]> call HelloWorld.sol 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 set "Hello, FISCO BCOS"
transaction hash:0xa7c7d5ef8d9205ce1b228be1fe90f8ad70eeb6a5d93d3f526f30d8f431cb1e70

To call the get interface of HelloWorld to get the name string for checking whether the settings take effect
[group:1]> call HelloWorld.sol 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 get
Hello, FISCO BCOS

To call the insert interface of TableTest to insert the record, the fields are name, item_id, item_name
[group:1]> call TableTest.sol 0xd653139b9abffc3fe07573e7bacdfd35210b5576 insert "fruit" 1 "apple"
transaction hash:0x6393c74681f14ca3972575188c2d2c60d7f3fb08623315dbf6820fc9dcc119c1

Event logs

InsertResult index: 0
count = 1

To call TableTest's select interface to inquiry records
[group:1]> call TableTest.sol 0xd653139b9abffc3fe07573e7bacdfd35210b5576 select "fruit"
[[fruit], [1], [apple]]

Note: TableTest.sol contract codeReference here。

deployByCNS

Run deployByCNS and deploy the contract with CNS. Contracts deployed with CNS can be called directly with the contract name.

Parameter:

	Contract name: deployable contract name.

	Contract version number: deployable contract version number(the length cannot exceed 40).

To deploy HellowWorld contract 1.0 version
[group:1]> deployByCNS HelloWorld.sol 1.0
contract address:0x3554a56ea2905f366c345bd44fa374757fb4696a

To deploy HellowWorld contract 2.0 version
[group:1]> deployByCNS HelloWorld.sol 2.0
contract address:0x07625453fb4a6459cbf14f5aa4d574cae0f17d92

To deploy TableTest contract
[group:1]> deployByCNS TableTest.sol 1.0
contract address:0x0b33d383e8e93c7c8083963a4ac4a58b214684a8

Note:

	For deploying the contracts compiled by users only needs to place the solidity contract file in the contracts/solidity/ directory of the console root and to deploy it. Press tab key to search for the contract name in the contracts/solidity/ directory.

	If the contract to be deployed references other contracts or libraries, the reference format is import "./XXX.sol";. The related contract and library are placed in the contracts/solidity/ directory.

	**Because FISCO BCOS has removed the transfer payment logic of Ethereum, the solidity contract does not support using payable keyword. This keyword will cause the Java contract file converted by solidity contract to fail at compilation. **

queryCNS

Run queryCNS and query the CNS table record information (the mapping of contract name and contract address) according to the contract name and contract version number (optional parameter).

Parameter:

	Contract name: deployable contract name.

	Contract version number: (optional) deployable contract version number.

[group:1]> queryCNS HelloWorld.sol

| version | address |
| 1.0 | 0x3554a56ea2905f366c345bd44fa374757fb4696a |

[group:1]> queryCNS HelloWorld 1.0

| version | address |
| 1.0 | 0x3554a56ea2905f366c345bd44fa374757fb4696a |

callByCNS

To run deployByCNS and deploy the contract with CNS.
Parameter:

	Contract name and contract version number: The contract name and contract version number are separated by colon, such as HelloWorld:1.0 or HelloWorld.sol:1.0. When the contract version number is omitted like HelloWorld or HelloWorld.sol, the latest version of the contract is called.

	Contract interface name: The called contract interface name.

	Parameter: is determined by the parameter of contract interface. The parameters are separated by spaces, where the string and byte type parameters need to be enclosed in double quotation marks; the array parameters need to be enclosed in brackets, such as [1, 2, 3]. The array is a string or byte type with double quotation marks such as [“alice”, “bob”]; the boolean type is true or false.

To call the HelloWorld contract 1.0 version to set the name string by the set interface
[group:1]> callByCNS HelloWorld:1.0 set "Hello,CNS"
transaction hash:0x80bb37cc8de2e25f6a1cdcb6b4a01ab5b5628082f8da4c48ef1bbc1fb1d28b2d

To call the HelloWorld contract 2.0 version to set the name string by the set interface
[group:1]> callByCNS HelloWorld:2.0 set "Hello,CNS2"
transaction hash:0x43000d14040f0c67ac080d0179b9499b6885d4a1495d3cfd1a79ffb5f2945f64

To call the HelloWorld contract 1.0 version to get the name string by the get interface
[group:1]> callByCNS HelloWorld:1.0 get
Hello,CNS

To call the HelloWorld contract 2.0 version to get the name string by the get interface
[group:1]> callByCNS HelloWorld get
Hello,CNS2

addSealer

To run addSealer to add the node as a consensus node.
Parameter:

	node’s nodeId

[group:1]> addSealer ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{
	"code":0,
	"msg":"success"
}

addObserver

To run addObserver to add the node as an observed node.
Parameter:

	node’s nodeId

[group:1]> addObserver ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{
	"code":0,
	"msg":"success"
}

removeNode

To run removeNode to exit the node. The exit node can be added as a consensus node by the addSealer command or can be added as an observation node by the addObserver command.
Parameter:

	node’s nodeId

[group:1]> removeNode ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{
	"code":0,
	"msg":"success"
}

setSystemConfigByKey

To run setSystemConfigByKey to set the system configuration in key-value pairs. The currently system configuration supports tx_count_limit, tx_gas_limit, rpbft_epoch_sealer_num and rpbft_epoch_block_num. The key name of these two configuration can be complemented by the tab key:

	tx_count_limit: block maximum number of packaged transactions

	tx_gas_limit: The maximum number of gas allowed to be consumed

	rpbft_epoch_sealer_num: rPBFT system configuration, the number of consensus nodes selected in a consensus epoch

	rpbft_epoch_block_num: rPBFT system configuration, number of blocks generated in one consensus epoch

	consensus_timeout: During the PBFT consensus process, the timeout period for each block execution, the default is 3s, the unit is seconds

Parameters:

	key

	value

[group:1]> setSystemConfigByKey tx_count_limit 100
{
	"code":0,
	"msg":"success"
}

getSystemConfigByKey

To run getSystemConfigByKe to inquire the value of the system configuration according to the key.
Parameter:

	key

[group:1]> getSystemConfigByKey tx_count_limit
100

grantPermissionManager

Run grantPermissionManager to grant the account’s chain administrator privileges. parameter:

	account address

[group:1]> grantPermissionManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listPermissionManager

To run listPermissionManager to inquire the list of permission records with administrative privileges.

[group:1]> listPermissionManager

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokePermissionManager

To run revokePermissionManager to revoke the permission management of the external account address.
parameter:

	account address

[group:1]> revokePermissionManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantUserTableManager

Run grantUserTableManager to grant the account to write to the user table.

parameter:

	table name

	account address

[group:1]> grantUserTableManager t_test 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listUserTableManager

Run listUserTableManager to query the account’s table that has writing permission to the user table.

parameter:

	table name

[group:1]> listUserTableManager t_test

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeUserTableManager

Run revokeUserTableManager to revoke the account’s writing permission from the user table.

parameter:

	table name

	account address

[group:1]> revokeUserTableManager t_test 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantDeployAndCreateManager

Run grantDeployAndCreateManager to grant the account’s permission of deployment contract and user table creation.

parameter:

	account address

[group:1]> grantDeployAndCreateManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listDeployAndCreateManager

Run listDeployAndCreateManager to query the account’s permission of deployment contract and user table creation.

[group:1]> listDeployAndCreateManager

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeDeployAndCreateManager

Run revokeDeployAndCreateManager to revoke the account’s permission of deployment contract and user table creation.

parameter:

	account address

[group:1]> revokeDeployAndCreateManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantNodeManager

Run grantNodeManager to grant the account’s node management permission.

parameter:

	account address

[group:1]> grantNodeManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listNodeManager

Run the listNodeManager to query the list of accounts that have node management.

[group:1]> listNodeManager

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeNodeManager

Run revokeNodeManager to revoke the account’s node management permission.

parameter:

	account address

[group:1]> revokeNodeManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantCNSManager

Run grantCNSManager to grant the account’s permission of using CNS.
parameter:

	account address

[group:1]> grantCNSManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listCNSManager

Run listCNSManager to query the list of accounts that have CNS.

[group:1]> listCNSManager

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeCNSManager

Run revokeCNSManager to revoke the account’s permission of using CNS.
parameter:

	account address

[group:1]> revokeCNSManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantSysConfigManager

Run grantSysConfigManager to grant the account’s permission of modifying system parameter.
parameter:

	account address

[group:1]> grantSysConfigManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listSysConfigManager

Run listSysConfigManager to query the list of accounts that have modified system parameters.

[group:1]> listSysConfigManager

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 2 |

revokeSysConfigManager

Run revokeSysConfigManager to revoke the account’s permission of modifying system parameter. parameter:

	account address

[group:1]> revokeSysConfigManager 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

grantContractWritePermission

Run grantContractWritePermissio to grant the account the contract write permission. parameters:

	contract address

	account address

[group:1]> grantContractWritePermission 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

listContractWritePermission

Run listContractWritePermission to query the account list which have write permission of the contract. parameters:

	contract address

[group:1]> listContractWritePermission 0xc0ce097a5757e2b6e189aa70c7d55770ace47767

| address | enable_num |
| 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d | 11 |

revokeContractWritePermission

Run revokeContractWritePermission to Revoke the account the contract write permission. parameters:

	合约地址

	account address

[group:1]> revokeContractWritePermission 0xc0ce097a5757e2b6e189aa70c7d55770ace47767 0xc0d0e6ccc0b44c12196266548bec4a3616160e7d
{
	"code":0,
	"msg":"success"
}

quit

To run quit, q or exit to exit the console.

quit

[create sql]

Run create sql statement to create a user table in mysql statement form.

Create user table t_demo whose primary key is name and other fields are item_id and item_name
[group:1]> create table t_demo(name varchar, item_id varchar, item_name varchar, primary key(name))
Create 't_demo' Ok.

Note:

	The field types for creating table are all string types. Even if other field types of the database are provided, the field types have to be set according to the string type.

	The primary key field must be specified. For example, to create a t_demo table with the primary key field as name.

	The primary key of the table has different concept from the primary key in the relational database. Here, the value of the primary key is not unique, and the primary key value needs to be passed when the blockchain underlying platform is handling records.

	You can specify the field as the primary key, but the setting fields such as self-incrementing, non-empty, indexing, etc do not work.

desc

Run desc statement to query the field information of the table in mysql statement form.

query the field information of the t_demo table. you can view the primary key name and other field names of the table.

[group:1]> desc t_demo
{
 "key":"name",
 "valueFields":"item_id,item_name"
}

[insert sql]

Run insert sql statement to insert the record in the mysql statement form.

[group:1]> insert into t_demo (name, item_id, item_name) values (fruit, 1, apple1)
Insert OK, 1 row affected.

Note:

	must insert a record sql statement with the primary key field value of the table.

	The enter values with punctuation, spaces, or strings containing letters starting with a number requires double quotation marks, and no more double quotation marks are allowed inside.

[select sql]

Run select sql statement to query the record in mysql statement form.

query the records contain all fields
select * from t_demo where name = fruit
{item_id=1, item_name=apple1, name=fruit}
1 row in set.

query the records contain the specified fields
[group:1]> select name, item_id, item_name from t_demo where name = fruit
{name=fruit, item_id=1, item_name=apple1}
1 row in set.

insert a new record
[group:1]> insert into t_demo values (fruit, 2, apple2)
Insert OK, 1 row affected.

use the keyword 'and' to connect multiple query condition
[group:1]> select * from t_demo where name = fruit and item_name = apple2
{item_id=2, item_name=apple2, name=fruit}
1 row in set.

use limit field to query the first line of records. If the offset is not provided, it is 0 by default.
[group:1]> select * from t_demo where name = fruit limit 1
{item_id=1, item_name=apple1, name=fruit}
1 row in set.

use limit field to query the second line record. The offset is 1
[group:1]> select * from t_demo where name = fruit limit 1,1
{item_id=2, item_name=apple2, name=fruit}
1 rows in set.

Note:

	For querying the statement recording sql, the primary key field value of the table in the where clause must be provided.

	The limit field in the relational database can be used. Providing two parameters which are offset and count.

	The where clause only supports the keyword ‘and’. Other keywords like ‘or’, ‘in’, ‘like’, ‘inner’, ‘join’, ‘union’, subquery, multi-table joint query, and etc. are not supported.

	The enter values with punctuation, spaces, or strings containing letters starting with a number requires double quotation marks, and no more double quotation marks are allowed inside.

[update sql]

Run update sql statement to update the record in mysql statement form.

[group:1]> update t_demo set item_name = orange where name = fruit and item_id = 1
Update OK, 1 row affected.

Note:

	For updating the where clause of recording sql statement, the primary key field value of the table in the where clause must be provided.

	The enter values with punctuation, spaces, or strings containing letters starting with a number requires double quotation marks, and no more double quotation marks are allowed inside.

[delete sql]

Run delete sql statement to delete the record in mysql statement form.

[group:1]> delete from t_demo where name = fruit and item_id = 1
Remove OK, 1 row affected.

Note:

	For deleting the where clause of recording sql statement, the primary key field value of the table in the where clause must be provided.

	The enter values with punctuation, spaces, or strings containing letters starting with a number requires double quotation marks, and no more double quotation marks are allowed inside.

Important

The executing of the freezeContract/unfreezeContract/grantContractStatusManager commands for contract management should specify the private key to start the console for permission.This private key is also the account private key used to deploy the specified contract. So a private key should be specified to launch the console when deploying the contract.

freezeContract

Run freezeContract to freeze contract according contract address.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

[group:1]> freezeContract 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
{
 "code":0,
 "msg":"success"
}

unfreezeContract

Run unfreezeContract to unfreeze contract according contract address.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

[group:1]> unfreezeContract 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
{
 "code":0,
 "msg":"success"
}

grantContractStatusManager

Run grantCNSManager to grant the account’s permission of contract status managememt.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

	Account address: tx.origin. The prefix of 0x is not necessary.

[group:1]> grantContractStatusManager 0x30d2a17b6819f0d77f26dd3a9711ae75c291f7f1 0x965ebffc38b309fa706b809017f360d4f6de909a
{
 "code":0,
 "msg":"success"
}

getContractStatus

To run getContractStatus to query contract status according contract address.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

[group:1]> getContractStatus 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
The contract is available.

listContractStatusManager

To run listContractStatusManager to query a list of authorized accounts that can manage a specified contract.
Parameter:

	Contract address: To deploy contract can get contract address. The prefix of 0x is not necessary.

[group:1]> listContractStatusManager 0x30d2a17b6819f0d77f26dd3a9711ae75c291f7f1
[
 "0x0cc9b73b960323816ac5f52806257184c08b5ac0",
 "0x965ebffc38b309fa706b809017f360d4f6de909a"
]

grantCommitteeMember

grant account with Committee Member permission. Parameters:

	account address

[group:1]> grantCommitteeMember 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a
{
 "code":0,
 "msg":"success"
}

revokeCommitteeMember

revoke account’s Committee Member permission, parameters:

	account address

[group:1]> revokeCommitteeMember 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a
{
 "code":0,
 "msg":"success"
}

listCommitteeMembers

[group:1]> listCommitteeMembers

address	enable_num
0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a	1
0x85961172229aec21694d742a5bd577bedffcfec3	2

updateThreshold

vote to modify the votes threshold, Parameters:

	threshold:[0,99]

[group:1]> updateThreshold 75
{
 "code":0,
 "msg":"success"
}

queryThreshold

query votes threshold

[group:1]> queryThreshold
Effective threshold : 50%

queryCommitteeMemberWeight

[group:1]> queryCommitteeMemberWeight 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a
Account: 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a Weight: 1

updateCommitteeMemberWeight

update Committee Member’s votes. Parameters：

	account address

	votes

[group:1]> updateCommitteeMemberWeight 0x61d88abf7ce4a7f8479cff9cc1422bef2dac9b9a 2
{
 "code":0,
 "msg":"success"
}

grantOperator

grantOperator, committee member’s permission, parameters:

	account address

[group:1]> grantOperator 0x283f5b859e34f7fd2cf136c07579dcc72423b1b2
{
 "code":0,
 "msg":"success"
}

revokeOperator

revokeOperator, committee member’s permission, parameters:

	account address

[group:1]> revokeOperator 0x283f5b859e34f7fd2cf136c07579dcc72423b1b2
{
 "code":0,
 "msg":"success"
}

listOperators

list address who has operator permission。

[group:1]> listOperators

| address | enable_num |
| 0x283f5b859e34f7fd2cf136c07579dcc72423b1b2 | 1 |

freezeAccount

Run freezeAccount to freeze account according account address.
Parameter:

	account address: tx.origin. The prefix of 0x is necessary.

[group:1]> freezeAccount 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
{
 "code":0,
 "msg":"success"
}

unfreezeAccount

Run unfreezeAccount to unfreeze account according account address.
Parameter:

	account address: tx.origin. The prefix of 0x is necessary.

[group:1]> unfreezeAccount 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
{
 "code":0,
 "msg":"success"
}

getAccountStatus

Run getAccountStatus to get status of the account according account address.
Parameter:

	account address: tx.origin. The prefix of 0x is necessary.

[group:1]> getAccountStatus 0xcc5fc5abe347b7f81d9833f4d84a356e34488845
The account is available.

Appendix: Java environment configuration

Install Java in ubuntu environment

Install the default Java version (Java 8 version or above)
sudo apt install -y default-jdk
query Java version
java -version

Install Java in CentOS environment

Note: the OpenJDK under CentOS does not work properly and needs to be replaced with the OracleJDK.

To create new folder to install Java 8 version or above. To put the downloaded jdk in the software directory
Download Java 8 version or above from Oracle official website (https://www.oracle.com/technetwork/java/javase/downloads/index.html). For example, to download jdk-8u201-linux-x64.tar.gz
$ mkdir /software
To unzip jdk
$ tar -zxvf jdk-8u201-linux-x64.tar.gz
To configure the Java environment and edit the /etc/profile file.
$ vim /etc/profile
After opening the file, to enter the following three sentences into the file and exit
export JAVA_HOME=/software/jdk-8u201-linux-x64.tar.gz
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
profile takes effect
$ source /etc/profile
To inquire the Java version. If the result shows the version you just downloaded, the installation is successful.
java -version

 Blockchain browser

Blockchain browser

1. Description

1.1 Introduction

This blockchain browser is compatible with FISCO BCOS 2.0.0. FISCO BCOS 1.2 or 1.3 users please check v1.2.1 [https://github.com/FISCO-BCOS/fisco-bcos-browser/releases/tag/v1.2.1].

Blockchain browser is capable of blockchain visualization and real-time presentation. Users can get the information of the blockchain through web pages. This browser is only compatible with FISCO BCOS 2.0+ [https://github.com/FISCO-BCOS/FISCO-BCOS/tree/master-2.0]. You can learn the newest features in here. Before using this browser, you may need to learn the groups feature of FISCO BCOS 2.0+.

[image: ../../_images/overview.png]

1.2 Main functional modules

This chapter will give a brief introduction on each module of the browser for all-round understanding. Main functional modules of the blockchain browser includes: group switch module, configuration module and data visualization module.

1.2.1 Group switch module

Group switch module is adopted to access blockchain data when switching to different groups in multi-groups case.

[image: ../../_images/switch_group.jpg]

1.2.2 Configuration module

Configuration module includes group configuration, node configuration and contract configuration.

[image: ../../_images/group_config.png]

1.2.3 Data visualization module

Blockchain browser demonstrates the detail information of specific group on the chain including: overview, block information and transaction information.

[image: ../../_images/show.jpg]

2. Premises of use

2.1 Group building

Data shown in the blockchain browser is synchronized with blockchain. To synchronize data, initialization configuration (adding group information and node information) is needed. So users have to run a FISCO BCOS instance and build groups before data synchronizing. FISCO BCOS 2.0+ [https://github.com/FISCO-BCOS/FISCO-BCOS/tree/master-2.0] has provided multiple convenient group building methods.

	For developers to experience and debug quickly, we recommend the script build_chain.

	For enterprise applications, FISCO BCOS generator is a more considerable deployment tool.

The distinguish of the above methods lie in that the script build_chain is for better and quicker building experience and it helps developers generate private key of each node in groups; deployment tool doesn’t automatically generate private key for safety consideration, and business users need to generate and set by themselves.

3. Building of blockchain browser

Blockchain browser can be divided into two parts: the back-end service “fisco-bcos-browser” and the front-end web page “fisco-bcos-browser-front”.

We also provide two ways for browser building in the current version: one-key setup and manual setup.

3.1.1 One-click setup

One-click setup is suitable for single-machine deployment of front-end and back-end to experience quickly. The detail process is introduced in Installation document.

3.1.2 Manual setup

Back-end service building

The back-end service of blockchain browser adopts JAVA back-end service, i.e., Spring Boot. The exactly building process can be referred in Installation document.

Front-end web page service building

Front-end conducts vue-cli. Also, the tutorial can be found in Installation document.

4. Initialization environment

4.1 Adding group

[image: ../../_images/create_group.png]

Once it is set up, users can access the front-end by typing IP and its port configured by nginx through web browser. Browser without group initialization will lead to new group configuration page, where the group ID, group name and group description are needed.

Group ID should be consistent with the specific blockchain. There are many methods to check group ID:

	acquire rpc interface.

	console commands: Please refer to here for the console user manual of version 2.6 and above, and here for the console user manual of version 1.x

Group name should be meaningful and better understandable as a explanation of group ID.

Group description is the further illustration of the name.

4.2 Adding node

[image: ../../_images/add_node.png]

The next step, you need to add the node information belong to the group to obtain relative information shown in blockchain browser. RPC port and P2P port of nodes can be acquired from the file config.ini in the directory of a specific node.

For easy use, the newly added group will synchronize the information of shared node which configured by other groups before.

4.3 Adding contract

On this version, the browser provides the function of contract analysis, which requires users to import all contracts the group had deployed before. User can upload zip package (only support one-level directory) to solve namesake contract issues.

Steps of import

4.3.1 Import contract

	Contract is required to be uploaded as *.sol file or zip package.

	Zip package is compatible with one-level directory at most and defaulted to be uploaded to root directory. Zip package can only contain *.sol files.

4.3.2 Compile contract

[image: ../../_images/contract.png]

5. Functions introduction

5.1 Blockchain overview

5.1.1 Overall overview

Overall overview includes block number of the group, transaction volume, processing transaction amount and the PBFT view.

5.1.2 Transaction volume in 15 days

The transactions of the group in 15 days are shown in the line chart.

5.1.3 Node overview

Node overview includes node ID, current block height, the PBFT view and node status.

5.1.4 Block overview

Block overview includes the information of the latest four blocks, including block height, block generator, generation time and transaction volume on the block.

5.1.5 Transaction overview

Transaction overview includes the latest four transactions, including transaction hash, transaction time, transaction sender & receiver. The information invoked by transactions can also be shown if the related contract is imported correctly.

[image: ../../_images/overview.png]

5.2 Block information

Block information includes pages of block list and block details.

5.3 Transaction information

Transaction information includes pages of transaction list and transaction details.

5.3.1 Transaction analysis

After contract is uploaded and compiled, blockchain browser can analyze the transaction method names and parameters. The analysis of the browser is based on correct import of contract. Therefore, when using JAVA or JS to call contract, please save the correct version of contract.

[image: ../../_images/transaction.png]

5.3.2 Event analysis

After contract is uploaded and compiled, blockchain browser can analyze event method names and parameters in the transaction receipts.

[image: ../../_images/receipt.png]

 Enterprise deployment tool

Enterprise deployment tool

Introduction

FISCO BCOS generator [https://github.com/FISCO-BCOS/generator] provides companies with an easy toolkit for deployment, administration, and monitoring of multi-group consortium chain.

	It eliminates the complexity of generating and maintaining the blockchain and offers alternative deployment methods.

	It requires agencies to share node credentials and manage their private key but not exposed to the outsider, maintaining the security of all nodes.

	It helps agencies deploy nodes safely through e-certificate trading, supporting equality of all nodes.

[image: ../../_images/toolshow.png]

Design background

There cannot be exhaustive trust between equal agencies in consortium chain, where e-certificate will be needed for nodes to authenticate each other’s identity.

The certificate is the identity documentation for each agency. And the generation of the certificate depends on its public & private key pair. The private key represents its identity information that is private and strictly confidential. In the process of activation and operation, node signs on the data packet with the private key to fulfilling identity authentication. Provided that an agency’s private key is revealed, anyone else can pretend as the owner and get authorized without the affirmation of this agency.

When initializing the group of FISCO BCOS, nodes should reach an agreement to create a Genesis Block. Genesis Block, unique and only within one group, bears the identity information of the initial nodes, which is formed through e-credential exchanging.

Current IT administration tools for consortium chain usually ignore the requirement for equality and security of companies during initialization. And initialization needs agencies to agree on identity information on Genesis Block. So, who should be the information generator is crucial. Firstly, an agency generates its node information first and then activate blockchain for other nodes to join in. Secondly, a third-party authority makes information for all nodes and sends the node configuration files to each agency.

Additionally, FISCO BCOS 2.0+ adapts more private and scalable multi-group architecture. It is an architecture where data and transactions between groups are separated by running independent consensus algorithm, a way to maintain privacy and security in blockchain scenarios.

In the above models, there is always one agency who gains priority to join the consortium chain or acquires private keys of all nodes.

How to make sure the group is formed in a balanced, safe, and private way? How to guarantee reliable and effective operation of nodes? The privacy and security of group ledgers, as well as the confidentiality of group formation and maintenance, need to be achieved efficiently.

Design concept

FISCO BCOS generator is a solution designed for problems described above. It takes into consideration the equal deployment and group formation of different agencies based on flexibility, security, ease-of-use, and equality.

Flexibility:

	No installation, ready to use

	Alternative deployment methods

	Allow multiple changes in architecture

Safety:

	Allow multiple changes in architecture

	The private key is kept internally

	Negotiation between agencies is based on certificates only

Ease-to-use:

	Support multiple networking models

	Alternative commands for various needs

	Monitor audit script

Equality:

	The equal authority of agencies

	All agencies co-generate Genesis Block

	Same administrative power within groups

For consortium chain based on existed root credential, it can fast configure multiple groups on-chain to adapt for different business needs.

Each agency can generate a configuration file folder locally that includes no private key Agencies can keep their private keys internally and prevent malicious attackers in disguise of nodes or any information leakage, even if the configuration files are lost. In this way, security and usability of nodes can be achieved at the same time.

Users agree to generate the Genesis Block and node configuration file folder and then activate nodes so that they will conduct multi-group networking according to the configuration files.

 Tutorial of one_click_generator.sh

Tutorial of one_click_generator.sh

The one_click_generator.sh script is a script that deploys a federated chain with one click based on the node configuration filled out by the user. The script will generate the corresponding node under the folder according to the node_deployment.ini configured under the user-specified folder.

This chapter mainly uses the networking mode of deploying 3 organizations 2 groups 6 nodes to explain the use of enterprise-level deployment tools for single-button one-button deployment.

This tutorial is suitable for single-node deployment of all nodes. The enterprise-level deployment tool multi-agent deployment tutorial can refer to Using Enterprise Deployment Tools.

Important

When using the one-click deployment script, you need to ensure that the current meta folder does not contain node certificate information. You can clean the meta folder.

Download and install

download

cd ~/
git clone https://github.com/FISCO-BCOS/generator.git

If you have network issue for exec the command above, please try:
git clone https://gitee.com/FISCO-BCOS/generator.git

Installation

This action requires the user to have sudo privileges.

cd ~/generator && bash ./scripts/install.sh

Check if the installation is successful. If successful, output usage: generator xxx

./generator -h

Get node binary

Pull the latest fisco-bcos binary to the meta, you can try --cdn to improve your download speed.

./generator --download_fisco ./meta

Check the binary version

If successful, output FISCO-BCOS Version : x.x.x-x

./meta/fisco-bcos -v

PS: source compile Node binary user, you only need to replace the binary in the meta folder with the compiled binary.

Typical example

This section demonstrates how to use the one-click deployment function of the enterprise-level deployment tool to build a blockchain.

Node Network Topology

A networking model of a 6-node 3-institution 2 group as shown. agency B and agency C are located in Group 1 and Group 2, respectively. agency A belongs to both Group 1 and Group 2.

[image: ../../_images/one_click_step_3.png]

Machine Environment

The IP of each node, the port number is as follows:

	agency
	Node
	Group
	P2P Address
	RPC Listening Address
	Channel Listening Address

	agency A
	Node 0
	Group 1, 2
	127.0.0.1:30300
	127.0.0.1:8545
	0.0.0.0:20200

	
	Node 1
	Group 1, 2
	127.0.0.1:30301
	127.0.0.1:8546
	0.0.0.0:20201

	
	Node 4
	Group 1, 2
	127.0.0.1:30304
	127.0.0.1:8549
	0.0.0.0:20202

	agency B
	Node 2
	Group 1
	127.0.0.1:30302
	127.0.0.1:8547
	0.0.0.0:20203

	
	Node 3
	Group 1
	127.0.0.1:30303
	127.0.0.1:8548
	0.0.0.0:20204

	agency C
	Node 5
	Group 1, 2
	127.0.0.1:30305
	127.0.0.1:8550
	0.0.0.0:20205

Note

	The public IP of the cloud host is a virtual IP. If you enter the external IP in rpc_ip/p2p_ip/channel_ip, the binding will fail. You must fill in 0.0.0.0

	The RPC/P2P/Channel listening port must be in the range of 1024-65535, and must not conflict with other application listening ports on the machine

	For security and ease of use consideration, FISCO BCOS v2.3.0 latest node config.ini configuration splits listen_ip into jsonrpc_listen_ip and channel_listen_ip, but still retains the parsing function of listen_ip, please refer to here

	In order to facilitate development and experience, the reference configuration of channel_listen_ip is 0.0.0.0. For security reasons, please modify it to a safe listening address according to the actual business network situation, such as: intranet IP or specific external IP

Generate group 1 node

First, complete the operation of group A and B to set up group 1, as shown in the figure:

[image: ../../_images/one_click_step_1.png]

Before use, the user needs to prepare a folder such as tmp_one_click, which has a directory of different organizations under the folder. Each agency directory needs to have a corresponding configuration file node_deployment.ini. Before use, you need to ensure that the generator’s meta folder has not been used.

View the one-click deployment template folder:

cd ~/generator
ls ./tmp_one_click

#Parameter explanation
For multiple organizations, you need to create this folder manually.
Tmp_one_click # user specifies the folder for a one-click deployment operation
├── agencyA #agencyA directory, after the command is executed, the node of the agency A and related files will be generated in the list.
│ └── node_deployment.ini # Institution A node configuration file, one-click deployment command will create the corresponding node according to the data
└── agencyB #agencyB directory, after the command is executed, the node of the agency B and related files will be generated in the list.
 └── node_deployment.ini # Institution B node configuration file, one-click deployment command will generate the corresponding node according to the data

Institution to fill in node information

The configuration file is placed in the tutorial with agencyA under the tmp_one_click folder, under agencyB

cat > ./tmp_one_click/agencyA/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; host IP for the communication among peers.
; Please use your ssh login IP.
p2p_ip=127.0.0.1
; listening IP for the communication between SDK clients.
; This IP is the same as p2p_ip for the physical host.
; But for virtual host e.g., VPS servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30300
channel_listen_port=20200
jsonrpc_listen_port=8545

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30301
channel_listen_port=20201
jsonrpc_listen_port=8546
EOF

cat > ./tmp_one_click/agencyB/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; Host IP for the communication among peers.
; Please use your ssh login IP.
p2p_ip=127.0.0.1
; listening IP for the communication between SDK clients.
; This IP is the same as p2p_ip for the physical host.
; But for virtual host e.g., VPS servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30302
channel_listen_port=20202
jsonrpc_listen_port=8547

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30303
channel_listen_port=20203
jsonrpc_listen_port=8548
EOF

Generate node

bash ./one_click_generator.sh -b ./tmp_one_click

After the execution is completed, the ./tmp_one_click folder structure is as follows:

View the one-click deployment template folder after execution:

ls ./tmp_one_click

├── agencyA # A agency folder
│ ├── agency_cert # A agency certificate and private key
│ ├── generator-agency # Automatically replaces the generator folder operated by the A mechanism
│ ├── node #A node generated by the agency, when the multi-machine is deployed, it can be pushed to the corresponding server.
│ ├── node_deployment.ini # Node configuration information of A agency
│ └── SDK # A SDK or console configuration file
├── agencyB
| ├── agency_cert
| ├── generator-agency
| ├── node
| ├── node_deployment.ini
| └── sdk
|── ca.crt # chain certificate
|── ca.key # chain private key
|── group.1.genesis # group one's genesis block
|── peers.txt # node's peers.txt

Start node

Call the script to start the node:

bash ./tmp_one_click/agencyA/node/start_all.sh

bash ./tmp_one_click/agencyB/node/start_all.sh

View the node process:

ps -ef | grep fisco

#Command explanation
can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyA/node/node_127.0.0.1_30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyA/node/node_127.0.0.1_30301/fisco-bcos -c config.ini
fisco 15442 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyB/node/node_127.0.0.1_30302/fisco-bcos -c config.ini
fisco 15456 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyB/node/node_127.0.0.1_30303/fisco-bcos -c config.ini

View node running status

View the node log:

tail -f ~/generator/tmp_one_click/agency*/node/node*/log/log* | grep +++

#Command explanation
+++ is the normal consensus of the node
Info|2019-02-25 17:25:56.028692| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum =1, tx=0, myIdx=0, hash=833bd983...
Info|2019-02-25 17:25:59.058625| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum =1, tx=0, myIdx=0, hash=343b1141...
Info|2019-02-25 17:25:57.038284| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum =1, tx=0, myIdx=1, hash=ea85c27b...

Add node to group 1

Next, we add new nodes for agency A and agency C, and complete the networking shown in the following figure:

[image: ../../_images/one_click_step_2.png]

Initialize the expansion configuration

Important

When using the one-click deployment script, you need to ensure that the current meta folder does not contain node certificate information. You can clean the meta folder.

Create an expansion folder, don’t use the same foler

mkdir ~/generator/tmp_one_click_expand/

Copy the chain certificate and private key to the expansion folder

cp ~/generator/tmp_one_click/ca.* ~/generator/tmp_one_click_expand/

Copy group 1 genesis block group.1.genesis to expansion folder

cp ~/generator/tmp_one_click/group.1.genesis ~/generator/tmp_one_click_expand/

Copy group 1 node P2P connection file peers.txt to expansion folder

cp ~/generator/tmp_one_click/peers.txt ~/generator/tmp_one_click_expand/

agency A configuration node information

Create the directory where the agency A expansion node is located.

mkdir ~/generator/tmp_one_click_expand/agencyA

At this time, the agency A already exists in the alliance chain. So it is necessary to copy the agency A certificate and the private key to the corresponding folder.

cp -r ~/generator/tmp_one_click/agencyA/agency_cert ~/generator/tmp_one_click_expand/agencyA

agency A fills in the node configuration information

cat > ./tmp_one_click_expand/agencyA/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; Host IP for the communication among peers.
; Please use your ssh login IP.
p2p_ip=127.0.0.1
; listening IP for the communication between SDK clients.
; This IP is the same as p2p_ip for the physical host.
; But for virtual host e.g., VPS servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30304
channel_listen_port=20204
jsonrpc_listen_port=8549
EOF

Institution C configuration node information

Create a directory where the agency C expansion node is located.

mkdir ~/generator/tmp_one_click_expand/agencyC

agency C fills in the node configuration information

cat > ./tmp_one_click_expand/agencyC/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; Host IP for the communication among peers.
; Please use your ssh login IP.
p2p_ip=127.0.0.1
; listening IP for the communication between SDK clients.
; This IP is the same as p2p_ip for the physical host.
; But for virtual host e.g., VPS servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30305
channel_listen_port=20205
jsonrpc_listen_port=8550
EOF

Generate expansion nodes

bash ./one_click_generator.sh -e ./tmp_one_click_expand

Starting a new node

Call the script to start the node:

bash ./tmp_one_click_expand/agencyA/node/start_all.sh

bash ./tmp_one_click_expand/agencyC/node/start_all.sh

View the node process:

ps -ef | grep fisco

#Command explanation
can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyA/node/node_127.0.0.1_30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyA/node/node_127.0.0.1_30301/fisco-bcos -c config.ini
fisco 15403 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click_expand/agencyA/node/node_127.0.0.1_30304/fisco-bcos -c config.ini
fisco 15442 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyB/node/node_127.0.0.1_30302/fisco-bcos -c config.ini
fisco 15456 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click/agencyB/node/node_127.0.0.1_30303/fisco-bcos -c config.ini
fisco 15466 1 0 17:22 pts/2 00:00:00 ~/generator/tmp_one_click_expand/agencyC/node/node_127.0.0.1_30305/fisco-bcos -c config.ini

Important

New nodes that are expanded for group 1 need to be added to the group using SDK or console.

Registering a node with the console

Due to the large size of the console, there is no direct integration in a one-click deployment. Users can use the following command to get the console.

Getting the console may take a long time, and domestic users can use the --cdn command:

For example, if the agency A uses the console, this step needs to be switched to the generator-agency folder corresponding to the agency A.

cd ~/generator/tmp_one_click/agencyA/generator-agency

./generator --download_console ./ --cdn

Viewing agency A node-4 information

agency A uses the console to join the agency A node 4 as the consensus node, where the second parameter needs to be replaced with the nodeid of the joining node, and the nodeid is the node.nodeid of the conf of the node folder.

View the agency A node nodeid:

cat ~/generator/tmp_one_click_expand/agencyA/node/node_127.0.0.1_30304/conf/node.nodeid

ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123

Registering Consensus Nodes Using the Console

Start the console:

cd ~/generator/tmp_one_click/agencyA/generator-agency/console && bash ./start.sh 1

Use the console addSealer command to register the node as a consensus node. In this step, you need to use the cat command to view the node node.nodeid of the agency A node:

addSealer ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123

$ [group:1]> addSealer ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{
	"code":0,
	"msg":"success"
}

exit console：

exit

Viewing agency C Node 5

agency A uses the console to join node 5 of agency C as the observation node, where the second parameter needs to be replaced with the nodeid of the joining node, and the nodeid is the node.nodeid file of the conf of the node folder.

View the agency C node nodeid:

cat ~/generator/tmp_one_click_expand/agencyC/node/node_127.0.0.1_30305/conf/node.nodeid

5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d

Registering an observation node using the console

Start the console:

cd ~/generator/tmp_one_click/agencyA/generator-agency/console && bash ./start.sh 1

Use the console addObserver command to register the node as a watch node. In this step, you need to use the cat command to view the node #node.nodeid` of the agency C node:

addObserver 5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d

$ [group:1]> addObserver 5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d
{
	"code":0,
	"msg":"success"
}

Exit the console:

exit

At this point, we have completed the operation of adding a new node to an existing group.

Existing Node New Group 2

The operation of the new group can be done by modifying the ./conf/group_genesis.ini file in the directory where the one_click_generator.sh is executed and executing the --create_group_genesis command.

Generate group 2 as shown in Figure 4

[image: ../../_images/one_click_step_3.png]

Configure Group 2 genesis block

 This operation needs to be performed under the above operation generator.

cd ~/generator

Configuring the group genesis block file. Add nodeX=ip:port under [nodes] which belong to the members of new group. For example they are: AgencyA-Node0, AgencyA-Node1, AgencyA-Node4 and AgencyC-Node5.

cat > ./conf/group_genesis.ini << EOF
[group]
group_id=2

[nodes]
node0=127.0.0.1:30300
node1=127.0.0.1:30301
node2=127.0.0.1:30304
node3=127.0.0.1:30305
EOF

Get the corresponding node certificate

AgencyA-Node0（node0=127.0.0.1:30300）

cp ~/generator/tmp_one_click/agencyA/generator-agency/meta/cert_127.0.0.1_30300.crt ~/generator/meta

AgencyA-Node1（node1=127.0.0.1:30301）

cp ~/generator/tmp_one_click/agencyA/generator-agency/meta/cert_127.0.0.1_30301.crt ~/generator/meta

AgencyA-Node4（node2=127.0.0.1:30304）

cp ~/generator/tmp_one_click_expand/agencyA/generator-agency/meta/cert_127.0.0.1_30304.crt ~/generator/meta

AgencyC-Node5（node3=127.0.0.1:30305）

cp ~/generator/tmp_one_click_expand/agencyC/generator-agency/meta/cert_127.0.0.1_30305.crt ~/generator/meta

Generating genesis block and group configure file

./generator --create_group_genesis ./group2

将群组创世区块加入现有节点：

AgencyA-Node0（node0=127.0.0.1:30300）

./generator --add_group ./group2/group.2.genesis ./tmp_one_click/agencyA/node/node_127.0.0.1_30300

AgencyA-Node1（node1=127.0.0.1:30301）

./generator --add_group ./group2/group.2.genesis ./tmp_one_click/agencyA/node/node_127.0.0.1_30301

AgencyA-Node4（node2=127.0.0.1:30304）

 ./generator --add_group ./group2/group.2.genesis ./tmp_one_click_expand/agencyA/node/node_127.0.0.1_30304

AgencyC-Node5（node3=127.0.0.1:30305）

./generator --add_group ./group2/group.2.genesis ./tmp_one_click_expand/agencyC/node/node_127.0.0.1_30305

Load and start new group

Use load_new_groups.sh to load configuration of new group, and call startGroup RPC interface to start new group

AgencyA-Node0（node0=127.0.0.1:30300）

bash ./tmp_one_click/agencyA/node/node_127.0.0.1_30300/scripts/load_new_groups.sh
curl -X POST --data '{"jsonrpc":"2.0","method":"startGroup","params":[2],"id":1}' http://127.0.0.1:8545

AgencyA-Node1（node1=127.0.0.1:30301）

bash ./tmp_one_click/agencyA/node/node_127.0.0.1_30301/scripts/load_new_groups.sh
curl -X POST --data '{"jsonrpc":"2.0","method":"startGroup","params":[2],"id":1}' http://127.0.0.1:8546

AgencyA-Node4（node2=127.0.0.1:30304）

bash ./tmp_one_click_expand/agencyA/node/node_127.0.0.1_30304/scripts/load_new_groups.sh
curl -X POST --data '{"jsonrpc":"2.0","method":"startGroup","params":[2],"id":1}' http://127.0.0.1:8549

AgencyA-Node5（node3=127.0.0.1:30305）

bash ./tmp_one_click_expand/agencyC/node/node_127.0.0.1_30305/scripts/load_new_groups.sh
curl -X POST --data '{"jsonrpc":"2.0","method":"startGroup","params":[2],"id":1}' http://127.0.0.1:8550

Check node

View the group1 information in the node log:

tail -f ~/generator/tmp_one_click/agency*/node/node*/log/log* | grep g:2 | grep +++

info|2019-02-25 17:25:56.028692| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,myIdx=0,hash=833bd983...
info|2019-02-25 17:25:59.058625| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,myIdx=0,hash=343b1141...
info|2019-02-25 17:25:57.038284| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,myIdx=1,hash=ea85c27b...

So far, we have completed all the operations in the build tutorial shown.

 After using it, it is recommended to clean the meta folder with the following command:

 - rm ./meta/cert_*
 - rm ./meta/group*

More operations

For more operations, refer to the Operation Manual or Enterprise Tools Peer-to-Peer Deployment Tutorial.

If you have problems with this tutorial, please check FAQ

 enterprise deployment tools

enterprise deployment tools

FISCO BCOS enterprise deployment tools are designed for multi-agency production environments. For ensure the security of the agency’s private keys, enterprise deployment tools provide agencies’ collaboration to deploy an alliance chain.

This chapter will demonstrate how to use enterprise deployment tools by deploying a 6 nodes 3 agencies 2 groups alliance chain. For more parameter options, please refer to here.

This chapter is a process that multi-agency peer-to-peer deployment and a situation that the private key of the agency does not come out of intranet. The tutorial for generating configuration files of all agency nodes through a single agency’s click start can refer to FISCO BCOS Enterprise Deployment Tool ClickStart deployment.

Download and install

download

cd ~/
git clone https://github.com/FISCO-BCOS/generator.git

If you have network issue for exec the command above, please try:
git clone https://gitee.com/FISCO-BCOS/generator.git

install

This operation requires sudo permission.

cd generator && bash ./scripts/install.sh

Check whether the installation is successful. If it is, output usage: generator xxx

./generator -h

download fisco-bcos binary

download the latest fisco-bcos binary to ./meta, you can try --cdn to improve your download speed.

./generator --download_fisco ./meta

check fisco-bcos version

Output will be: FISCO-BCOS Version : x.x.x-x

./meta/fisco-bcos -v

PS: If someone wants to use Source Code Compile fisco-bcos binary, they need to replace the binary in the meta folder with the compiled binary.

Typical example

For ensure the security of the agency’s private keys, enterprise deployment tools provide a secure way to build chain between agencies. This chapter will demonstrate how to make a chain between agencies in a deployment model of 6 nodes 3 agencies 2 groups.

Node networking overview

A networking model of 6 nodes 3 agencies 2 groups is shown as follows. Agency B and agency C is located in Group 1 and Group 2, and agency A belongs to both Group 1 and Group 2.

[image: ../../_images/tutorial_step_2.png]

Machine address

The IP address of each node and port are as follows:

	Agency
	Node
	Group
	P2P address
	RPC listening address
	channel listening IP

	agencyA
	node0
	group1,2
	127.0.0.1:30300
	127.0.0.1:8545
	0.0.0.0:20200

	
	node1
	group1,2
	127.0.0.1:30301
	127.0.0.1:8546
	0.0.0.0:20201

	agencyB
	node2
	group1
	127.0.0.1:30302
	127.0.0.1:8547
	0.0.0.0:20202

	
	node3
	group1
	127.0.0.1:30303
	127.0.0.1:8548
	0.0.0.0:20203

	agencyC
	node4
	group2
	127.0.0.1:30304
	127.0.0.1:8549
	0.0.0.0:20204

	
	node5
	group2
	127.0.0.1:30305
	127.0.0.1:8550
	0.0.0.0:20205

Note

	The public IP of the cloud host is a virtual IP. If you enter the external IP in rpc_ip/p2p_ip/channel_ip, the binding will fail. You must fill in 0.0.0.0

	The RPC/P2P/Channel listening port must be in the range of 1024-65535, and must not conflict with other application listening ports on the machine

	For security and ease of use consideration, FISCO BCOS v2.3.0 latest node config.ini configuration splits listen_ip into jsonrpc_listen_ip and channel_listen_ip, but still retains the parsing function of listen_ip, please refer to here

	In order to facilitate development and experience, the reference configuration of channel_listen_ip is 0.0.0.0. For security reasons, please modify it to a safe listening address according to the actual business network situation, such as: intranet IP or specific external IP

cooperate agencies

Building chain involves the cooperation between multiple agencies, including:

	Certificate authority agency

	alliance chain member agency(next named “agency”)

Key process

In this section, we briefly provide How Certificate authority agency and alliance chain member agency cooperate to build a blockchain.

1. Initialize chain certificate

	Certificate authority agency operation:

	Generate chain certificate

2. Generate group 1

	Certificate authority agency operations

	generate agency certificate

	send the certificate to agencies

	Operation between agencies

	modify the configuration file node_deployment.ini

	generate node certificate and node P2P port address file peers.txt

	Select one of the agencies to create group.genesis

	collect all node certificates in the group

	modify configuration file group_genesis.ini

	generate genesis block files for the group

	distribute genesis block files to other agencies

	Operation between agencies: generating nodes

	collect P2P port address files of other nodes in the group

	generate node

	start node

3. Initialize a new institution

	Certificate authority agency operations

	generate agency certificate

	send the certificate to the new agency

4. Generate group2

	New agency operation

	modify the configuration file node_deployment.ini

	generate node certificate and node P2P port address file

	Select one of the agencies as a group to create genesis block

	collect all node certificates in the group

	modify configuration file group_genesis.ini

	generate genesis block files for the group

	distribute genesis block files to other agency

	New agency independent operation: create nodes

	collect P2P port address files of other nodes in the group

	generate nodes

	start nodes

	Existing agency’s operations: configure new groups

	collect P2P port address files of other nodes in the group

	configure P2P port address of the new group and the new nodes

	restart nodes

5. Existing nodes join group 1

	Group 1 original agency operation:

	send group 1 genesis block to the existing node

	configure console

	get the entering node nodeid

	add nodes to group1 by using console

Chain initialization

All the operations in this example are performed on the local machine. We use different catalogs to simulate various agencies’ environment and use the file copy operation to simulate the sending in the network. After performing Download and Install in the tutorial, please copy the generator to the corresponding agency’s generator directory.

Institutional initialization

We use generator downloaded from the tutorial as certificate agency.

Initialize agencyA

cp -r ~/generator ~/generator-A

Initialize agencyB

cp -r ~/generator ~/generator-B

Initialize chain certificate

A single chain has a unique ca.crt.

use --generate_chain_certificate to generate chain certificate

Operate in the certificate agency directory:

cd ~/generator

./generator --generate_chain_certificate ./dir_chain_ca

view the chain certificate and the private key:

ls ./dir_chain_ca

the above order has explained
From left to right, they are chain's certificate, and chain's private key.
ca.crt ca.key

AgencyA, B to build group 1

Initialize agencyA

In the tutorial, for operating simply, the certificate of agency and the private key are directly generated. In actual application, the private key agency.key should be created locally by agency first, and then the certificate request file is made, and the certificate agency.crt is obtained from the certificate agency

Operate in the certificate directory:

cd ~/generator

Generate agencyA certificate:

./generator --generate_agency_certificate ./dir_agency_ca ./dir_chain_ca agencyA

View agency certificate and the private key:

ls dir_agency_ca/agencyA/

From left to right, they are agency's certificate, and agency's private key
agency.crt agency.key ca.crt

For sending the chain certificate, agency certificate, and agency private key to agencyA, we use an example is to send the certificate from the certificate agency to the corresponding agency through the file copy, and put the certificate in the subdirectory of meta which is agency’s working directory.

cp ./dir_agency_ca/agencyA/* ~/generator-A/meta/

Initialize agencyB

Operate in the certificate directory:

cd ~/generator

Generate agencyB certificate:

./generator --generate_agency_certificate ./dir_agency_ca ./dir_chain_ca agencyB

For sending the chain certificate, agency certificate, and agency private key to agencyB, we use an example is to send the certificate from the certificate agency to the corresponding agency through the file copy, and put the certificate in the subdirectory of meta which is agency’s working directory.

cp ./dir_agency_ca/agencyB/* ~/generator-B/meta/

Important

Only one root certificate, ca.crt, can be used in an alliance chain. Do not generate multiple root certificates and private keys when deploying various servers. A group can only have one genesis block group.x.genesis.

AgencyA modifies configuration file

node_deployment.ini is the node configuration file. Enterprise deployment tool generates the corresponding node certificate according to the configuration of node_deployment.ini and the node configuration folder etc..

AgencyA modifies the node_deployment.ini in the conf folder, as shown below:

Execute the following command in the ~/generator-A directory

cd ~/generator-A

cat > ./conf/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; host ip for the communication among peers.
; Please use your ssh login ip.
p2p_ip=127.0.0.1
; listen ip for the communication between sdk clients.
; This ip is the same as p2p_ip for physical host.
; But for virtual host e.g. vps servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30300
channel_listen_port=20200
jsonrpc_listen_port=8545

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30301
channel_listen_port=20201
jsonrpc_listen_port=8546
EOF

AgencyA modifies configuration file

AgencyB modifies the node_deployment.ini in the conf folder, as shown below:

Execute the following command in the ~/generator-B directory

cd ~/generator-B

cat > ./conf/node_deployment.ini << EOF
[group]
group_id=1

[node0]
; host ip for the communication among peers.
; Please use your ssh login ip.
p2p_ip=127.0.0.1
; listen ip for the communication between sdk clients.
; This ip is the same as p2p_ip for physical host.
; But for virtual host e.g. vps servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30302
channel_listen_port=20202
jsonrpc_listen_port=8547

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30303
channel_listen_port=20203
jsonrpc_listen_port=8548
EOF

AgencyA generates and sends node information

Execute the following command in the ~/generator-A directory

cd ~/generator-A

AgencyA generates the node certificate and the P2P connection information file. In this step, we need to use the above configuration node_deployment.ini and the agency certificate and private key in the agency meta folder.

./generator --generate_all_certificates ./agencyA_node_info

view generated files:

ls ./agencyA_node_info

From left to right, they are the node certificate that needs to have interacted with the agencyA and the file that node P2P connects to the address (the node information of agency generated by the node_deployment.ini)
cert_127.0.0.1_30300.crt cert_127.0.0.1_30301.crt peers.txt

When the agency generates a node, it needs to specify the node P2P connection address of other nodes. Therefore, AgencyA needs to send the node P2P connection address file to AgencyB.

cp ./agencyA_node_info/peers.txt ~/generator-B/meta/peersA.txt

AgencyB generates and sends node information

Execute the following command in the ~/generator-B directory

cd ~/generator-B

AgencyB generates the node certificate and the P2P connection information file:

./generator --generate_all_certificates ./agencyB_node_info

The agency that generates the genesis block needs the node certificate. In the example, the agencyA generates the genesis block. Therefore, in addition to sending the node P2P connection address file, the agencyB needs to send the node certificate to agencyA.

Send certificate to agencyA

cp ./agencyB_node_info/cert*.crt ~/generator-A/meta/

Send the node P2P connection address file to agencyA

cp ./agencyB_node_info/peers.txt ~/generator-A/meta/peersB.txt

AgencyA generates the genesis block of group1

Execute the following command in the ~/generator-A directory

cd ~/generator-A

AgencyA modifies group_genesis.ini in the conf folder. For configuration items, refer to Manuals:

cat > ./conf/group_genesis.ini << EOF
[group]
group_id=1

[nodes]
node0=127.0.0.1:30300
node1=127.0.0.1:30301
node2=127.0.0.1:30302
node3=127.0.0.1:30303
EOF

After the command is executed, the ./conf/group_genesis.ini file will be modified:

;command interpretation
[group]
;group id
group_id=1

[nodes]
;AgencyA node p2p address
node0=127.0.0.1:30300
;AgencyA node p2p address
node1=127.0.0.1:30301
;AgencyB node p2p address
node2=127.0.0.1:30302
;AgencyB node p2p address
node3=127.0.0.1:30303

In the tutorial, we choose agencyA to generate genesis block of the group. But in the actual production, you can negotiate with alliance chain committee to make a choice.

This step will generate the genesis block of group_genesis.ini according to the node certificate configured in the meta folder of agencyA. In the tutorial, the agencyA’s meta is required to have the node certificates name as cert_127.0.0.1_30300.crt, cert_127.0.0.1_30301.crt, cert_127.0.0.1_30302.crt, cert_127.0.0.1_30303.crt. This step requires the node certificate of agencyB.

./generator --create_group_genesis ./group

Send group.1.genesis to AgencyB:

cp ./group/group.1.genesis ~/generator-B/meta

AgencyA generates the node to which it belongs

Execute the following command in the ~/generator-A directory

cd ~/generator-A

AgencyA generates the node to which it belongs. This command generates the corresponding node configuration folder according to the user-configured file node_deployment.ini:

Note: The node P2P connection information peers.txt specified in this step is the connect information of other nodes in the group. In the case of multiple agencies networking, they need to be merged.

./generator --build_install_package ./meta/peersB.txt ./nodeA

View the generated node configuration folder:

ls ./nodeA

command interpretation, displayed in tree style here
The generated folder nodeA information is as follows
├── monitor # monitor script
├── node_127.0.0.1_30300 # node configuration folder with server address 127.0.0.1 and port number 30300
├── node_127.0.0.1_30301
├── scripts # node related tool script
├── start_all.sh # node startups script in batch
└── stop_all.sh # node stops script in batch

AgencyA startups node:

bash ./nodeA/start_all.sh

View node process:

ps -ef | grep fisco

command interpretation
you can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_30301/fisco-bcos -c config.ini

AgencyB generates the node to which it belongs

Execute the following command in the ~/generator-B directory

cd ~/generator-B

AgencyB generates the node to which it belongs. This command generates the corresponding node configuration folder according to the user-configured file node_deployment.ini:

./generator --build_install_package ./meta/peersA.txt ./nodeB

AgencyB startups node:

bash ./nodeB/start_all.sh

Note

Startup node only needs to send the node folder corresponding to IP address. For example, the server of 127.0.0.1 only needs the node configuration folder corresponding to node_127.0.0.1_port. When deploying multiple machines, you only need to send the generated node folder to the corresponding server.

View group1 node running status

View process:

ps -ef | grep fisco

command interpretation
you can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_30301/fisco-bcos -c config.ini
fisco 15457 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_30302/fisco-bcos -c config.ini
fisco 15498 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_30303/fisco-bcos -c config.ini

view node log:

tail -f ./node*/node*/log/log* | grep +++

command interpretation
+++ printed in log is the normal consensus of the node
info|2019-02-25 17:25:56.028692| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,myIdx=0,hash=833bd983...
info|2019-02-25 17:25:59.058625| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,myIdx=0,hash=343b1141...
info|2019-02-25 17:25:57.038284| [g:1][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,myIdx=1,hash=ea85c27b...

By now, we have completed the operation of agencyA,B to build group1 as shown:

[image: ../../_images/tutorial_step_1.png]

Certificate authority initialize agencyC

Operate in the certificate generator directory:

cd ~/generator

Initialize agencyC Note. Now there is a chain certificate and a private key in the generator directory. In the actual environment, agencyC cannot obtain the chain certificate and the private key.

cp -r ~/generator ~/generator-C

Generate agencyC certificate:

./generator --generate_agency_certificate ./dir_agency_ca ./dir_chain_ca agencyC

View agency certificate and private key:

ls dir_agency_ca/agencyC/

command interpretation
From left to right, they are agency's certificate, agency's private key, and chain's certificate
agency.crt agency.key ca.crt

For sending the chain certificate, agency certificate, and agency private key to agencyA, we use an example is to send the certificate from the certificate agency to the corresponding agency through the file copy, and put the certificate in the subdirectory of meta which is agency’s working directory.

cp ./dir_agency_ca/agencyC/* ~/generator-C/meta/

AgencyA,C build group2

Next, agencyC needs to perform a new group establishment operation with agencyA. We take an example of agencyC generating genesis block.

AgencyA sends node information

Since agencyA has generated the node certificate and the peers file, we only need to send the previous generated node P2P connection information and the node certificate to agencyC as follows:

Execute the following command in the ~/generator-A directory

cd ~/generator-A

In the example, the genesis block of the group is generated by agencyC. Therefore the node certificate of agencyA and the node P2P connection address file are required, and the above file is sent to agencyC.

Send certificate to agencyC

cp ./agencyA_node_info/cert*.crt ~/generator-C/meta/

Send node P2P connection address file to agencyC

cp ./agencyA_node_info/peers.txt ~/generator-C/meta/peersA.txt

AgencyC modifies configuration file

AgencyC modifies node_deployment.ini in the conf folder as shown below:

Execute the following command in the ~/generator-C directory.

cd ~/generator-C

cat > ./conf/node_deployment.ini << EOF
[group]
group_id=2

[node0]
; host ip for the communication among peers.
; Please use your ssh login ip.
p2p_ip=127.0.0.1
; listen ip for the communication between sdk clients.
; This ip is the same as p2p_ip for physical host.
; But for virtual host e.g. vps servers, it is usually different from p2p_ip.
; You can check accessible addresses of your network card.
; Please see https://tecadmin.net/check-ip-address-ubuntu-18-04-desktop/
; for more instructions.
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30304
channel_listen_port=20204
jsonrpc_listen_port=8549

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30305
channel_listen_port=20205
jsonrpc_listen_port=8550
EOF

AgencyC generates and sends node information

Execute the following command in the ~/generator-C directory.

cd ~/generator-C

AgencyC generates node certificate and P2P connection information file:

./generator --generate_all_certificates ./agencyC_node_info

View generated file:

ls ./agencyC_node_info

command interpretation
From left to right, they are the node certificate that needs to have interacted with the agencyA and the file that node P2P connects to the address (the node information of agency generated by the node_deployment.ini)
cert_127.0.0.1_30304.crt cert_127.0.0.1_30305.crt peers.txt

When the agency generates a node, it needs to specify the node P2P connection address of other nodes. Therefore, agencyC needs to send the node P2P connection address file to agencyA.

cp ./agencyC_node_info/peers.txt ~/generator-A/meta/peersC.txt

AgencyC generates genesis block of group2

Execute the following command in the ~/generator-C directory.

cd ~/generator-C

AgencyC modifies group_genesis.ini in the conf folder as shown below:

cat > ./conf/group_genesis.ini << EOF
[group]
group_id=2

[nodes]
node0=127.0.0.1:30300
node1=127.0.0.1:30301
node2=127.0.0.1:30304
node3=127.0.0.1:30305
EOF

./conf/group_genesis.ini file will be modified after the command is executed:

;command interpretation
[group]
group_id=2

[nodes]
node0=127.0.0.1:30300
;agencyA node p2p address
node1=127.0.0.1:30301
;agencyA node p2p address
node2=127.0.0.1:30304
;agencyC node p2p address
node3=127.0.0.1:30305
;agencyC node p2p address

In the tutorial, agency C is chosen to generate a genesis block of the group. In the actual production, you can negotiate with the alliance chain committee to determine.

This step generates a genesis block of group_genesis.ini configuration according to the node certificate configured in the meta folder of agencyC.

./generator --create_group_genesis ./group

Distribute genesis block of group2 to agencyA:

cp ./group/group.2.genesis ~/generator-A/meta/

AgencyC generates the node to which it belongs

Execute the following command in the ~/generator-C directory

cd ~/generator-C

./generator --build_install_package ./meta/peersA.txt ./nodeC

AgencyC startups node:

bash ./nodeC/start_all.sh

ps -ef | grep fisco

command interpretation
you can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_30301/fisco-bcos -c config.ini
fisco 15457 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_30302/fisco-bcos -c config.ini
fisco 15498 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_30303/fisco-bcos -c config.ini
fisco 15550 1 0 17:22 pts/2 00:00:00 ~/generator-C/nodeC/node_127.0.0.1_30304/fisco-bcos -c config.ini
fisco 15589 1 0 17:22 pts/2 00:00:00 ~/generator-C/nodeC/node_127.0.0.1_30305/fisco-bcos -c config.ini

AgencyA initializes group2 for existing nodes

Execute the following command in the ~/generator-A directory

cd ~/generator-A

Add the group2 configuration file to the existing node. This step adds the genesis block of group2 group.2.genesis to all nodes under ./nodeA:

./generator --add_group ./meta/group.2.genesis ./nodeA

Add the agencyC node connect file peers to the existing node. This step adds the node P2P connection address of peersC.txt to all nodes under ./nodeA:

./generator --add_peers ./meta/peersC.txt ./nodeA

Restart agencyA node:

bash ./nodeA/stop_all.sh

bash ./nodeA/start_all.sh

View group2 node running status

View node’s process:

ps -ef | grep fisco

command interpretation
you can see the following process
fisco 15347 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_30300/fisco-bcos -c config.ini
fisco 15402 1 0 17:22 pts/2 00:00:00 ~/generator-A/nodeA/node_127.0.0.1_30301/fisco-bcos -c config.ini
fisco 15457 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_30302/fisco-bcos -c config.ini
fisco 15498 1 0 17:22 pts/2 00:00:00 ~/generator-B/nodeB/node_127.0.0.1_30303/fisco-bcos -c config.ini
fisco 15550 1 0 17:22 pts/2 00:00:00 ~/generator-C/nodeC/node_127.0.0.1_30304/fisco-bcos -c config.ini
fisco 15589 1 0 17:22 pts/2 00:00:00 ~/generator-C/nodeC/node_127.0.0.1_30305/fisco-bcos -c config.ini

View node log：

Execute the following command in the ~/generator-C directory

cd ~/generator-C

tail -f ./node*/node*/log/log* | grep +++

command interpretation
#+++ rinted in log is the normal consensus of the node
info|2019-02-25 17:25:56.028692| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,myIdx=0,hash=833bd983...
info|2019-02-25 17:25:59.058625| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,myIdx=0,hash=343b1141...
info|2019-02-25 17:25:57.038284| [g:2][p:264][CONSENSUS][SEALER]++++++++++++++++ Generating seal on,blkNum=1,tx=0,myIdx=1,hash=ea85c27b...

By now, we have completed the construction of agencyA, C to build group2 as shown:

[image: ../../_images/tutorial_step_2.png]

Extended Tutorial–agencyC node joins group1

Adding a node to an existing group requires users to send command by console. The example of adding nodes to the group is as follows:

Now there are nodes of agencyA, B and B in group1. Adding the node of agencyC to group1 needs to get the permission of the nodes in the group. To take the node of agencyA as an example:

Execute the following command in the ~/generator-A directory.

cd ~/generator-A

Send gensis block of group1 to agencyC

Send the configuration file of group1 to agencyC.

./generator --add_group ./group/group.1.genesis ~/generator-C/nodeC

Restart agencyC’s node:

bash ~/generator-C/nodeC/stop_all.sh

bash ~/generator-C/nodeC/start_all.sh

Configure console

agencyA’s configure console or Java SDK. In the tutorial, console is used as an example:

Note: This command will complete the console configuration according to the node and group in the user-configured node_deployment.ini. User can directly start the console. Please ensure that java is installed before starting.

./generator --download_console ./

View agencyC node4 information

AgencyA uses the console to join agencyC node4 as observation node. The second parameter needs to be replaced with the joining node ‘nodeid’, which locates in the node.nodeid file of the node folder conf.

View the agencyC node nodeid:

cat ~/generator-C/nodeC/node_127.0.0.1_30304/conf/node.nodeid

command interpretation
you can see a nodeid similar to the following. When using the console, you need to pass this parameter.
ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123

Register observation node by using console

start console:

cd ~/generator-A/console && bash ./start.sh 1

Use the console addObserver command to register the node as an observation node. In this step, you need to use the cat command to view node.nodeid of agencyC node.

addObserver ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123

command interpretation
Successful execution will prompt success
$ [group:1]> addObserver ea2ca519148cafc3e92c8d9a8572b41ea2f62d0d19e99273ee18cccd34ab50079b4ec82fe5f4ae51bd95dd788811c97153ece8c05eac7a5ae34c96454c4d3123
{
	"code":0,
	"msg":"success"
}

exit console:

exit

View agencyC node 5 information

AgencyA uses console to join node 5 of agencyC as the consensus node. The second parameter needs to be replaced with the joining node ‘nodeid’, which locates in the node.nodeid file of the node folder conf.

View the agencyC node nodeid:

cat ~/generator-C/nodeC/node_127.0.0.1_30305/conf/node.nodeid

command interpretation
you can see a nodeid similar to the following. When using the console, you need to pass this parameter.
5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d

Register consensus node by using console

Start console:

cd ~/generator-A/console && bash ./start.sh 1

Use the console’s addSealer command to register the node as a consensus node. In this step, you need to use the cat command to view the node.nodeid of agencyC node.

addSealer 5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d

command interpretation
Successful execution will prompt success
$ [group:1]> addSealer 5d70e046047e15a68aff8e32f2d68d1f8d4471953496fd97b26f1fbdc18a76720613a34e3743194bd78aa7acb59b9fa9aec9ec668fa78c54c15031c9e16c9e8d
{
	"code":0,
	"msg":"success"
}

Exit console:

exit

View node

Execute the following command in the ~/generator-C directory

cd ~/generator-C

View the group1 information in node log:

cat node*/node_127.0.0.1_3030*/log/log* | grep g:1 | grep Report

command interpretation
Observation node will only synchronize transaction data, and will not synchronize the consensus information in non-transaction status
^^^ is the transaction information of the node, and g:1 is the information printed by group1
info|2019-02-26 16:01:39.914367| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,num=0,sealerIdx=0,hash=9b76de5d...,next=1,tx=0,nodeIdx=65535
info|2019-02-26 16:01:40.121075| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,num=1,sealerIdx=3,hash=46b7f17c...,next=2,tx=1,nodeIdx=65535
info|2019-02-26 16:03:44.282927| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,num=2,sealerIdx=2,hash=fb982013...,next=3,tx=1,nodeIdx=65535
info|2019-02-26 16:01:39.914367| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,num=0,sealerIdx=0,hash=9b76de5d...,next=1,tx=0,nodeIdx=4
info|2019-02-26 16:01:40.121075| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,num=1,sealerIdx=3,hash=46b7f17c...,next=2,tx=1,nodeIdx=4
info|2019-02-26 16:03:44.282927| [g:1][p:65544][CONSENSUS][PBFT]^^^^^^^^Report,num=2,sealerIdx=2,hash=fb982013...,next=3,tx=1,nodeIdx=4

By now, we have completed all the operations in the tutorial shown.

[image: ../../_images/tutorial_step_3.png]

In this tutorial, we have generated a multi-group architecture alliance chain with a network topology of 3 agencies, 2 groups, and 6 nodes.

If you have problems with this tutorial, please view FAQ.

 Download & install

Download & install

Environment dependency

Dependency of FISCO BCOS generator:

	Dependent software
	Supported version

	python
	2.7+ or 3.6+

	openssl
	1.0.2k+

	curl
	default version

	nc
	default version

Download & install

Download

$ git clone https://github.com/FISCO-BCOS/generator.git

If you have network issue for exec the command above, please try:
$ git clone https://gitee.com/FISCO-BCOS/generator.git

Install

$ cd generator
$ bash ./scripts/install.sh

Check if it is installed successfully.

$./generator -h
if succeed, output usage: generator xxx

Pull node binaries

Pull the latest fisco-bcos binary files to meta.

$./generator --download_fisco ./meta

Check binaries version.

$./meta/fisco-bcos -v
if succeed, output FISCO-BCOS Version : x.x.x-x

PS：Source code compilation node binaries user need only to put the compiled binaries to meta directory.

 Config file

Config file

The config files of FISCO BCOS generator are placed under ./conf folder, including group’s genesis block config file group_genesis.ini, node config file node_deployment.ini.

The user configures node config file folder by operations on files under the conf folder.

Metadata folder meta

The meta folder of FISCO BCOS generator is metadata folder to store fisco-bcos binaries, chain certificate ca.crt, agency certificate agency.crt, agency private key and node certificate, group genesis block file, and so on.

The format of stored certificates should be cert_p2pip_port.crt. For example: cert_127.0.0.1_30300.crt.

FISCO BCOS generator will generate nodes config file according to the certificates under the meta folder and the config files under the conf folder.

group_genesis.ini

Through modifying the configuration of group_genesis.ini, the user generates a configuration of new group genesis block under the specific directory and meta folder. Such as group.1.genesis.

[group]
group_id=1

[nodes]
;node p2p address of group genesis block
node0=127.0.0.1:30300
node1=127.0.0.1:30301
node2=127.0.0.1:30302
node3=127.0.0.1:30303

Important

Node certificate is needed during generating genesis block. In the above case, the config file needs 4 nodes’ certificates, which are: cert_127.0.0.1_30301.crt, cert_127.0.0.1_30302.crt, cert_127.0.0.1_30303.crt and cert_127.0.0.1_30304.crt.

node_deployment.ini

Through modifying node_deployment.ini configuration, user can use –build_install_package command to generate node config file containing no private key under a specific folder. Each section[node] configured by the user is the needed node config file folder. section[peers] is the p2p information for connection with other nodes.

For example:

[group]
group_id=1

Owned nodes
[node0]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30300
channel_listen_port=20200
jsonrpc_listen_port=8545

[node1]
p2p_ip=127.0.0.1
rpc_ip=127.0.0.1
channel_ip=0.0.0.0
p2p_listen_port=30301
channel_listen_port=20201
jsonrpc_listen_port=8546

Read the node config command. To generate node certificate and node config file folder will need to read the config file.

Template folder tpl

The template folder of the generator is as below:

├── config.toml # sdk config file
├── config.ini # node config file template
├── config.ini.gm # OSCCA node config file template
├── group.i.genesis # group genesis block template
├── group.i.ini # group block configuration template
├── start.sh # start node script template
├── start_all.sh # start nodes in batch script template
├── stop.sh # stop node script template
└── stop_all.sh # stop nodes in batch template

To modify the consensus algorithm of node and the configured default DB, the user only needs to alter the configuration of config.ini, re-execute the commands to set relative node information.

For details of FISCO BCOS configuration please check FISCO BCOS config file

P2p node connection file peers.txt

P2P node connection file peers.txt is the node connection information of the other agencies specified when generating node config file folder. When executing build_install_package command, it’s needed to determine the p2p node connection file peers.txt, according to which node config file folder will start communication with other nodes.

User that executes generate_all_certificates command generates peers.txt according to the node_deployment.ini filled under conf directory. The user that adopts other ways to generate certificate needs to generate p2p node connection file manually and send to peers. The format of the p2p node connection file is:

127.0.0.1:30300
127.0.0.1:30301

Format like this: node ip:p2p_listen_port

	for multi-agency node communication, the files need to be combined

 Operation Tutorial

Operation Tutorial

FISCO BCOS generator contains multiple operations about node generation, expansion, group division, and certificate, which are introduced as below:

	Command
	Basic function
	

	create_group_genesis
	assign folder
	generate group Genesis Block in an assigned folder according to group_genesis.ini and the certificates in meta folder

	build_install_package
	generate node configuration file folder of node_deployment.ini in assigned folder (node certificate should be placed in meta folder)

 JSON-RPC API

JSON-RPC API

The following examples in this chapter adopt the curl [https://curl.haxx.se/] command, which is a data transfer tool that runs the command line by the URL language. JSON-RPC API of FISCO BCOS can be accessed by sending HTTP post request through curl commands. The URL address of the curl command is set as [jsonrpc_listen_ip](If the node is less than v2.3.0, set as the configuration item listen_ip) and [jsonrpc listen port] of [rpc] in a node config file. To format the json data, jq [https://stedolan.github.io/jq/] is used as a formatter. For the error codes, please check the RPC Design Documentation. For the transaction receipt status, please check here.

Error codes

RPC error code

When a rpc call is made, the Server will reply with a response, which contains error result field, which includes as follows:

	code: A Number that indicates the error type that occurred.

	message: A String providing a short description of the error.

	data: A Primitive or Structured value that contains additional information about the error. This may be omitted.

There are 2 types of error code: JSON-RPC standard error code and FISCO BCOS RPC error code.

JSON-RPC standard error code

Standard error codes and their corresponding meanings are as follows:

	code
	message
	definition

	-32600
	INVALID_JSON_REQUEST
	send invalid request object

	-32601
	METHOD_NOT_FOUND
	method not exist or valid

	-32602
	INVALID_PARAMS
	invalid method parameter

	-32603
	INTERNAL_ERROR
	internal call error

	-32604
	PROCEDURE_IS_METHOD
	internal error; ID field not provided in the request

	-32700
	JSON_PARSE_ERROR
	json received by server fails to be parsed

FISCO BCOS RPC error code

FISCO BCOS RPC error codes and their corresponding meanings are as follows:

	code
	message
	definition

	-40001
	GroupID does not exist
	GroupID does not exist

	-40002
	Response json parse error
	json acquired by JSON RPC parses error

	-40003
	BlockHash does not exist
	block hash doesn't exist

	-40004
	BlockNumber does not exist
	block number doesn't exist

	-40005
	TransactionIndex is out of range
	transaction index is out of range

	-40006
	Call needs a 'from' field
	call needs a 'from' field

	-40007
	Only pbft consensus supports the view property
	getPbftView interface; only pbft consensus supports the view property

	-40008
	Invalid System Config
	getSystemConfigByKey interface, inquire invalid key

	-40009
	Don't send requests to this group, the node doesn't belong to the group

 《深入浅出FISCO BCOS》

《深入浅出FISCO BCOS》

 Community

Community

FISCO BCOS, officially launched in December 2017, is the first China-developed open source consortium blockchain platform. It was collaboratively built by the FISCO open source working group, which was formed by Beyondsoft, Huawei, Shenzhen Securities Communications, DCITS, Forms Syntron, Tencent, WeBank, YIBI Technology, Yuexiu Financial Holdings (Fintech) and more.

FISCO BCOS resources

	Github homepage [https://github.com/FISCO-BCOS/FISCO-BCOS/tree/master-2.0]

	Technical documents [https://fisco-bcos-documentation.readthedocs.io]

	Inlightful articles [http://mp.weixin.qq.com/mp/homepage?__biz=MzA3MTI5Njg4Mw==&hid=2&sn=4f6d7251fbc4a73ed600e1d6fd61efc1&scene=18#wechat_redirect]

	Code contribution [https://mp.weixin.qq.com/s/_w_auH8X4SQQWO3lhfNrbQ]

	Feedbacks [https://github.com/FISCO-BCOS/FISCO-BCOS/issues]

	Application cases [https://mp.weixin.qq.com/s/cUjuWf1eGMbG3AFq60CBUA]

	2021FISCO BCOS Industrial Applications Whitepaper [https://mp.weixin.qq.com/s/PD-PUBp-cKHkn7DuE9YlqQ]

Join FISCO BCOS community

[bookmark: QR]
[image: ../_images/qr_code1.png]
[image: docs/../images/community/qr_code2.1.png]
[image: ../_images/changeable_body.png]
[image: ../_images/tailer.png]

 Index

Index

 One-click deployment

One-click deployment

1. Premises

	Environment
	Version

	Java
	jdk1.8.0_121 or above version

	python
	Python3.4+

	database
	mysql-5.6 or above version

	PyMySQL
	使用python3时需安装

2. Pull code

Execute command:

git clone https://github.com/FISCO-BCOS/fisco-bcos-browser.git

If you have network issue for exec the command above, please try:
git clone https://gitee.com/FISCO-BCOS/fisco-bcos-browser.git

Enter one-click deployment directory

cd fisco-bcos-browser/deploy

3. Modify config (except the unchanged ones):

Note:

​ a. Database and data should be prepared in advance.

​ b. The web service port shouldn’t be smaller than 1024.

vi common.properties
Database IP: sed -i "s/127.0.0.1/${your_db_ip}/g" common.properties
Database prot: sed -i "s/3306/${your_db_port}/g" common.properties
Datebase user name: sed -i "s/dbUsername/${your_db_account}/g" common.properties
Database password: sed -i "s/dbPassword/${your_db_password}/g" common.properties
Database name: sed -i "s/db_browser/${your_db_name}/g" common.properties

Web service port: sed -i "s/5100/${your_web_port}/g" common.properties
Server service port: sed -i "s/5101/${your_server_port}/g" common.properties

Example (Change the database IP from 10.0.0.1 to 0.0.0.0): sed -i "s/10.0.0.1/0.0.0.0/g" application.yml

4. Deploy

set up all the service:

python deploy.py installAll

stop all the service:

python deploy.py stopAll

other information can be found through the help parameter:

python deploy.py help

5. Access the explorer

Typing the server IP and port had set before in the explorer:

http://127.0.0.1:5100

6. Log directory

the default log directory is set as follow:

Deployment log：log/
Server log：server/log/
Web log：web/log/

 One-click deployment

One-click deployment

1. Premises

	Environment
	Version

	Java
	jdk1.8.0_121 or above version

	python
	2.7

	database
	mysql-5.6 or above version

2. Pull code

Execute command:

git clone https://github.com/FISCO-BCOS/fisco-bcos-browser.git

If you have network issue for exec the command above, please try:
git clone https://gitee.com/FISCO-BCOS/fisco-bcos-browser.git

Enter one-click deployment directory

cd fisco-bcos-browser/deploy

3. Modify config (except the unchanged ones):

Note:

​ a. Database and data should be prepared in advance.

​ b. The web service port shouldn’t be smaller than 1024.

vi common.properties
Database IP: sed -i "s/127.0.0.1/${your_db_ip}/g" common.properties
Database prot: sed -i "s/3306/${your_db_port}/g" common.properties
Datebase user name: sed -i "s/dbUsername/${your_db_account}/g" common.properties
Database password: sed -i "s/dbPassword/${your_db_password}/g" common.properties
Database name: sed -i "s/db_browser/${your_db_name}/g" common.properties

Web service port: sed -i "s/5100/${your_web_port}/g" common.properties
Server service port: sed -i "s/5101/${your_server_port}/g" common.properties

Example (Change the database IP from 10.0.0.1 to 0.0.0.0): sed -i "s/10.0.0.1/0.0.0.0/g" application.yml

4. Deploy

set up all the service:

python deploy.py installAll

stop all the service:

python deploy.py stopAll

other information can be found through the help parameter:

python deploy.py help

5. Access the explorer

Typing the server IP and port had set before in the explorer:

http://127.0.0.1:5100

6. Log directory

the default log directory is set as follow:

Deployment log：log/
Server log：server/log/
Web log：web/log/

 Build server of Blockchain explorer

Build server of Blockchain explorer

Content

	Functions

	Prerequisites

	Deployment

	Troubleshooting

	Appendix

1. Functions

This project aims to build the back-end server of the Blockchain explorer. Its workflow includes extracting the node’s local blockchain data into a database, providinfg database access to the front-end webpage.

2. Prerequisites

	Environment
	Version

	Java
	jdk1.8.0_121 or above version

	gradle
	gradle-5.0 or above version

	database
	mysql-5.6 or above version

	Note: the installation details is attached in Additional.
	

3. Deployment

3.1 Pull code

Execute command:

git clone https://github.com/FISCO-BCOS/fisco-bcos-browser.git

If you have network issue for exec the command above, please try:
git clone https://gitee.com/FISCO-BCOS/fisco-bcos-browser.git

cd fisco-bcos-browser

3.2 Compile code

Enter the code directory:

cd server/fisco-bcos-browser

Then, build code:

gradle build

It will create a target directory dist after the building.

3.3 Modify config

The directory dist provides a config template on dist/conf_template(only for reference)：

create a config file on dist/conf and set the parameters according to the template, or copy and rename the template if it's the initial installation.
 Example：cp dist/conf_template dist/conf -r

Enter directory:

cd dist/conf

Modify service config (except for the unchanged parts):

Database server should be prepared in advance. The build method can be referred in Appendix.

modify current server port: sed -i "s/5101/${your_server_port}/g" application.yml
modify database IP: sed -i "s/127.0.0.1/${your_db_ip}/g" application.yml
modify database user name: sed -i "s/dbUsername/${your_db_account}/g" application.yml
modify database password: sed -i "s/dbPassword/${your_db_password}/g" application.yml
modify database name: sed -i "s/db_browser/${your_db_name}/g" application.yml

Example (change the database IP from 127.0.0.1 to 0.0.0.0): sed -i "s/127.0.0.1/0.0.0.0/g" application.yml

Note:

In real production, we suggest to place the compiled install package (i.e. the directory dist) to the service deployment directory. For example: /data/app/fisco-bcos-browser

3.4 Service start/stop

Go to the compiled target directory:

cd dist

start：sh start.sh
stop：sh stop.sh
review：sh status.sh

3.5 View log

Enter the compiled target directory:

cd dist

Execute the command:

tail -f log/fisco-bcos-browser.log

4. Troubleshooting

4.1 Start/Stop fail

If this problem happens in the above bash script, please try:

chmod +x *.sh

4.2 gradle build fail

If the following exception occures during the building process. Please check the gradle version and make sure it is at v 5.0 or above.

Could not find method annotationProcessor() for arguments [org.projectlombok:lombok:1.18.2] on object of type org.gradle.api.internal.artifacts.dsl.dependencies.DefaultDependencyHandler.

5. Appendix

5.1 Java environment deployment

Here are simple steps for quick start. For detailed description, please consult the official website [http://www.oracle.com/technetwork/java/javase/downloads/index.html].

Download Java installation package from the official website [http://www.oracle.com/technetwork/java/javase/downloads/index.html] corresponding to the specific version introduced before, and decompress to the relevant directory:

mkdir /software
tar -zxvf jdkXXX.tar.gz /software/

Configure environment variable:

export JAVA_HOME=/software/jdk1.8.0_121
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar

5.2 gradle enrironment deployment

Here are simple steps for quick start. For detailed description, please consult the official website [http://www.gradle.org/downloads].

Download the 5.0 or above version of gradle installation package from the website [http://www.gradle.org/downloads] and decompress to the relative directory.

mkdir /software/
unzip -d /software/ gradle-XXX.zip

Configure environment variable

export GRADLE_HOME=/software/gradle-XXX
export PATH=$GRADLE_HOME/bin:$PATH

5.3 Set-up MySQL

Here we take Centos/Fedora as an example.

a. Transfer to the root user

sudo -s

b. Install MySQL

yum install mysql*
some versions of Linux needs to install mariadb which is a branch of mysql
yum install mariadb*

c. Start MySQL service

service mysqld start
#if mariadb is installed, start it with the following command
systemctl start mariadb.service

d. Initialize database user

Access the database with the root user:

mysql -u root

Set password for the root user and grant the access privilege to remote login

mysql > SET PASSWORD FOR 'root'@'localhost' = PASSWORD('123456');
mysql > GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY '123456' WITH GRANT OPTION;

Notes:

	The database password (123456) provided here is only for example. We strongly recommend you to set more complexer password.

	The setting of remote access in the example will make the database accessible for the outside network . Please limit the network accessibility according to the specific network topology and permissioned accounts.

Create test user and a database test, grant the database privilege to the test user:

mysql > CREATE user 'test'@'localhost' identified by '123456';
mysql > CREATE DATABASE test;
mysql > GRANT ALL PRIVILEGES ON test.* TO 'test'@'localhost' IDENTIFIED BY '123456' WITH GRANT OPTION;

e. Test the connection

Open another terminal and check the database connection with the test user :

mysql -utest -p123456 -h 127.0.0.1 -P 3306

If login successfully, execute the following SQL commands to check the privilege granting.

mysql > SHOW DATABASES;
mysql > USE test;

f. Create database

Login database with root user

mysql -uroot -p

Create database and grant the privilege to test user

mysql > CREATE DATABASE db_browser;
mysql > GRANT ALL PRIVILEGES ON db_browser.* TO 'test'@'localhost' IDENTIFIED BY '123456' WITH GRANT OPTION;

5.3.1 Common issues

After installing MySQL on centos of Tencent Cloud , it reports the exception: Access denied for user ‘root’@’localhost’

	Edit /etc/my.cnf, add the follow in the bottom of [mysqld]

 skip-grant-tables

	Save and restart MySQL

 service mysqld restart

	Input the following command, press enter, input password and press enter again to login MySQL

 mysql -uroot -p mysql

 Build the front-end of the Blockchain explorer

Build the front-end of the Blockchain explorer

This document introduce how to build fisco-bcos web service with vue-cli framework.

It adapts to IE9 or above version, 360 browser of compatible version (IE9 core), 360 browser speed version and Chrome.

1. Functions

(1) The main functions include Blockchain overview, block and transaction details, node configuration and group switch.

(2) It supports groups switch, but it needs to configure groups and nodes before switching.

(3) The front-end also provides the transactions analysis function that you can upload and compile the contracts had deployed on the chain and it responds the decoded results which contains the inputs data and event of transactions.

(4) It provides Blockchain overview, block details, transaction and node configuration pages that execute each round of request om every 10 seconds.

2. Deploy

2.1 Environment dependency

	Environment
	Version

	nginx
	nginx1.6 or above version

The detailed installation of nginx introduced in Appendix.

2.2 Pull code

Execute command: (when web and server are deployed on the same machine, it only needs to be pulled once)

git clone https://github.com/FISCO-BCOS/fisco-bcos-browser.git

If you have network issue for exec the command above, please try:
git clone https://gitee.com/FISCO-BCOS/fisco-bcos-browser.git

cd fisco-bcos-browser

And then, place the dist directory under ./web/fisco-bcos-browser-front/ into /data/app/web directory.

Tip: the directory can be cutomized, as long as the step 2 of nginx config file is kept the same.

2.3 Modify nginx config

The Nginx config file is placed under ./web/fisco-bcos-browser-front/doc, which can be used to replace the default nginx.conf generated by the Nginx;

Note：If nginx is installed as the way shown in Appendix, the config file route is /usr/local/nginx/conf/nginx.conf.

And then modify nginx.conf:

	Modify IP address and the port for the web service.

	Modify web file route and point to dist directory that belong to the pulled code.

	Modify IP and port of the server service. Please do not edit ‘/api’.

 server {
 listen 5100 default_server; #Step 1, web nginx monitoring port
 server_name 192.168.0.1; #Step 2, web address, can be configured as domain name
 location / {
 root /data/app/web/dist; #Step 2, web file route
 index index.html index.htm;
 try_files $uri $uri/ /index.html =404;
 }

 # Load configuration files for the default server block.
 include /etc/nginx/default.d/*.conf;

 location /api {
 proxy_pass http://192.168.0.1:5101/; #Step 3, IP and port of server (fisco-bcos-browser server)
 	 	proxy_set_header		Host				$host;
 proxy_set_header		X-Real-IP			$remote_addr;
 proxy_set_header		X-Forwarded-For		$proxy_add_x_forwarded_for;
 	}
 }

2.4 Start nginx

(1) Start nginx

Execute command:

/usr/local/nginx/sbin/nginx

Start exception report and troubleshooting:

	The log route is correct or not (error.log and access.log).

	nginx service had been granted the access privilege or not.

(2) Access the Browser
Open the browser, typing the url with the web port and IP configured by nginx. For example: the url of the above config file is http:192.168.0.1:5100

(3) Configure the groups
Once you access the web pages, you may need to configure group (group IP same as build chain) firstly, an then configure nodes (within the group)to get the blockchain information..

3. Appendix

3.1 Install nginx（Please check Network Tutorial [http://www.runoob.com/linux/nginx-install-setup.html]）

3.1.1 Download nginx dependency

Please make sure you had installed gcc, pcre-devel, zlib-devel, openssl-develnginx before. If not, execute the command:

yum -y install gcc pcre-devel zlib-devel openssl openssl-devel

Please note the permission issues when executing command. Or you may need to add sudo.

3.1.2 Download nginx

nginx download address: https://nginx.org/download/(download the latest stable version)
Or use the following command:

wget http://nginx.org/download/nginx-1.10.2.tar.gz (version changeable)

Then, move the downloaded package to /usr/local/.

3.1.3 Install and test nginx

Decompress

tar -zxvf nginx-1.10.2.tar.gz

Enter nginx directory

cd nginx-1.10.2

Configure

./configure --prefix=/usr/local/nginx

Run the make command

make
make install

Test the install with command:

/usr/local/nginx/sbin/nginx –t

You may get the output message if it is successful:

nginx: the configuration file /usr/local/nginx/conf/nginx.conf syntax is ok
nginx: configuration file /usr/local/nginx/conf/nginx.conf test is successful

Here are the common commands of nginx

/usr/local/nginx/sbin/nginx -s reload # reload config file
/usr/local/nginx/sbin/nginx -s reopen # restart Nginx
/usr/local/nginx/sbin/nginx -s stop # stop Nginx
ps -ef | grep nginx # view progress of nginx

 v2.0.0

v2.0.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0]

v2.0.0-rc3 upgrades to v2.0.0

	Compatible upgrade : Directly replace the binary of the v2.0.0-rc3 node with v2.0.0 binary [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0/fisco-bcos.tar.gz]. The upgraded version fixes bugs in v2.0.0-rc3 but does not enable the new features in v2.0.0. after upgrading to v2.0.0, cannot roll back to v2.0.0-rc3

	Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node. The upgraded node contains the new features in v2.0.0.

	v2.0.0 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0]

Change description

New features

	AMOP Protocol supports Multicast

	AMOP protocol supports binary transmission

	Statistics of New Historic Failure Transactions in JSON-RPC `getTotal Transaction Count’Interface

Update

	RocksDB Mode supports storage security

	Use TCMalloc to optimize memory usage

Fix

	Fix the problem that the P2P module occasionally does not process messages

	Fix unassigned fields in MySQL or External mode, query failed

	Fix synchronization errors in some extreme scenarios

Compatibility

2.0.0 is forward compatible. Old versions can directly replace program upgrades, but new features of this version cannot be started. If you need to use the new features of this version, you need to build a new chain.

	
	Compatible Version
	Description

	console
	1.0.4
	before 1.0.4 is available, but there are no new features

	Web3SDK
	above 2.0.4
	

	generator
	1.0.0
	

	FISCO BCOS browser
	2.0.0-rc2
	

	Solidity
	Max Supported Solidity version 0.5.2
	

	amdb-proxy
	above 2.0.2
	

 v2.0.0-rc1

v2.0.0-rc1 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc1]

v1.x upgrades to v2.0.0-rc1

	v2.0.0-rc2 is not compatible with v1.x so v2.0.0-rc1 cannot directly parse the historical block data generated by v1.x, but the old data can be recovered by performing historical transaction on the new chain at v2.0.0-rc1 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc1/fisco-bcos.tar.gz]

	build 2.0’s new chain : Refer to install

	v2.0.0-rc1 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc1]

Change description

Architecture

	Add group architecture: each group has independent consensus and storage. System throughput can be lateral spreading based on lower operation cost.

	Add distributed data storage: supports nodes storing data in remote distributed systems to achieve computing and data isolation, high-speed capacity expansion, and data security level enhancement.

	Add support for precompiled contracts: the underlying implements pre-compiled contract framework based on C++, is compatible with the solidity calling method, and improves the performance of smart contract execution.

	Introducing evmc extension framework: support for extending different virtual machine engines.

	Upgrade remodeling P2P, consensus, sync, Transaction execution, transaction pool, block management module.

Protocol

	Implement a set of CRUD basic data access interface specification contract. To compile business contracts based on CRUD interface to implement traditional SQL oriented business development process.

	Support mechanisms such as transaction asynchronous notification, block putting on chain asynchronous notification, and custom AMOP message notification.

	Upgrade Ethereum virtual machine version and support Solidity 0.5.2 version.

	Upgrade RPC module.

Security

	UpgradeDisk encryption and provide private key management service. When the disk encryption function is enabled, to manage paivate key depands on KeyManager service.

	UpgradeAdmission mechanism. Through introducing the network access mechanism and the group access mechanism, to control the access of chain and data in different dimensions.

	UpgradeAuthority control system. Design access permission based on table

Others

	Provide an entry-level building chain tool.

	Provide modular unit testing and end-to-end integration testing and support automated continuous integration and continuous deployment.

Compatibility note

Compatible version

	
	Compatible version
	Description

	node
	not compatible with v1.x nodes
	v2.0.0-rc1 is not compatible with v1.x V2.0.0-rc1 cannot run directly on the v1.x node v2.0.0-rc1 node cannot communicate with the v1.x node

 v2.0.0-rc2

v2.0.0-rc2 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc2]

v2.0.0-rc1 upgrade to v2.0.0-rc2

	Compatible upgrade : Directly replace the binary of the v2.0.0-rc1 node with rc2 binary <https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc2/fisco-bcos.tar.gz>`_ . The upgraded version fixes bugs in v2.0.0-rc1 but does not enable the new features such as parallel computing, distributed storage, etc. in v2.0.0-rc2. after upgrading to v2.0.0-rc2, cannot roll back to v2.0.0-rc1

	Full upgrade : Refer to Install <../installation.html>`_ to build new chain and resubmit all historical transactions to the new node. The upgraded node contains the new features in v2.0.0-rc2.

	v2.0.0-rc2 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc2]

Change description

New features

	Parallel computing model: Parallel contract development framework, Parallel Transaction Executor (PTE)

	Distributed storage: amdb-proxy, SQLStorage

Optimization

	optimize the logic of block packing transaction number, and dynamically adjust the number of block packing transactions according to the execution time.

	optimize the process of block synchronization to make block synchronization faster

	optimize the codec of the upcoming transaction, the verification of the transaction and the coding of disk in parallel

	optimize the logic of transaction executing return code to make return code more accurate

	upgrade storage modules to support concurrent reading and writing

Other features

	add network data packet compression

	add compatibility configuration

	add chainID and group ID to the transaction code

	add binary cache in transaction

	add timestamp information in gensis block

	add some precompile demos

	support using Docker to build chain

	delete unnecessary logs

	delete unnecessary and repeat operations

Bug fix

	the bug of program exiting caused by asInt abnormity when processing parameters in RPC

	the bug in which the transaction has not been processed in pool when the transaction executing ‘Out of gas’

	the bug that can be replayed with the same transaction binary between different groups

	the problems of performance degradation caused by ‘insert’ operation

	some stability problems have been fixed

Compatibility note

	
	Compatible version
	Description

	node
	backwards compatible with v2.0.0-rc1 but not v1.x

 v2.0.0-rc3

v2.0.0-rc3 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc3]

v2.0.0-rc2 upgrades to v2.0.0-rc3

	Compatible upgrade : Directly replace the binary of the v2.0.0-rc2 node with rc3 binary [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.0.0-rc3/fisco-bcos.tar.gz]. The upgraded version fixes bugs in v2.0.0-rc2 but does not enable the new features in v2.0.0-rc3. after upgrading to v2.0.0-rc3, cannot roll back to v2.0.0-rc2

	Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node. The upgraded node contains the new features in v2.0.0-rc3.

	v2.0.0-rc3 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.0.0-rc3]

Change description

New features

	Distributed storage: [The new support for underlying connecting to MySQL directly through database connection pool]
(../manual/distributed_storage.html#id2)

	Distributed storage: [The new support for RocksDB engine, which to be used for storage by default when building new chain]
(../manual/configuration.html#id14)

	Distributed storage: The new support for CRUD interface. The console in 1.0.3 version or above provides class SQL statements to read and write blockchain data

Updates

	complete the ABI decoding module

	modify the error codes in precompiled contract and RPC interface and unify them to negative number

	optimize the storage module; increase the cache layer and support to configure cache size

	optimize the storage module; allow to submit block in pipelining. You can configure [storage] .max_capacity to control the memory size that is allowed

	move the distributed storage configuration item [storage] from the group genesis file to the group ini configuration file

	the default storage is upgraded to RocksDB and still supports the old version of LevelDB

	adjust the splicing logic of transaction mutex variables to improve the degree of parallelism of the transactions between different contracts

Fix

	fix the abnormal termination that may occur when CRUD interface contract opens parallel

Compatibility note

RC3 Forward Compatibility. The older versions can directly upgrade by replacing program, but they cannot launch the new features for this release. If you need to use the new features, you need to build chain again.

	
	Minimum version require
	Description

	console
	1.0.3
	the console with versions prior to 1.0.3 is available, but it has not the new features

	SDK
	2.0.3 or above
	

	generator
	1.0.0-rc3
	this version is required to build new chain.

	browser
	2.0.0-rc2
	

	Solidity
	highest support solidity 0.5.2
	

	amdb-proxy
	2.0.0 or above
	

 v2.1.0

v2.1.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.1.0]

v2.0.x upgrades to v2.1.0

	Compatible upgrade : Directly replace the binary of the v2.0.x node with v2.1.0 binary [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.1.0/fisco-bcos.tar.gz]. The upgraded version fixes bugs in v2.0.x but does not enable the new features in v2.1.0. In most cases, it is ok to rollback to v2.0.x after upgrading to v2.1.0. See the last section for more information.

	Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node. The upgraded node contains the new features in v2.1.0.

	v2.1.0 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.1.0]

Change description

New Features

	CA whitelist

	AMOP authentication

	Event log pushing

	Start new groups without restarting the node

Update

	Support Channel Message v2 protocol

	Support to configure node address with domain names

	Increase max contract binary size limit to 256KB

	Output more detailed log for transaction exceptions

	Rename SDK certificate file names generated by build_chain.sh to sdk.crt and sdk.key

	Adjust some code structure for better performance

	Decrease memory footprint

Fix

	Minor channel connection bugs

Compatibility

2.1.0 is forward compatible. Old versions can upgrade to this new version by directly replacing the binaries for bug fixing purpose. But the new features of this version cannot be enabled unless you deploy a new chain with only new binaries from scratch.

	
	Recommended version
	Minimum version
	Description

	console
	1.0.5
	1.0.4
	

	SDK
	2.1.0
	2.0.4
	

	generator
	1.1.0
	1.1.0
	

	FISCO BCOS browser
	2.0.0-rc2
	2.0.0-rc2
	

	Solidity
	up to 0.5.2
	0.4.11
	

	amdb-proxy
	2.1.0
	2.0.2
	

Rollback to v2.0.x after compatible upgrading

After compatible upgrading to v2.1.0, we can rollback by simply replacing fisco-bcos binary file to v2.0.x. If a large contract(binary size between 24K and 256K) is deployed after upgrading, rollback to v2.0.x may lead to block downloading error. In this case, we need to use v2.1.0 fisco-bcos to download blocks until newest block before rolling back.

 v2.2.0

v2.2.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.2.0]

v2.1.x upgrades to v2.2.0

	Compatible upgrade : Directly replace the binary of the v2.1.x node with v2.2.0 binary [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.2.0/fisco-bcos.tar.gz]. The upgraded version fixes bugs in v2.1.x but does not enable the new features in v2.2.0. In most cases, it is ok to rollback to v2.1.x after upgrading to v2.2.0. See the last section for more information.

	Full upgrade : Refer to Install to build new chain and resubmit all historical transactions to the new node. The upgraded node contains the new features in v2.2.0.

	v2.2.0 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.2.0]

Change description

New Features

	Constructing Merkel tree of transactions and receipts [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/merkle_proof.html], which provides an spv-based method of proof

	Plug-in caching mechanism and provide caching switches

Update

Optimize the process, storage and protocol to improve performance.

	process

	Commit RPC transactions to the transaction pool asynchronously

	Parallelize the processing of transactions in the transaction pool

	Optimize the caching strategy

	Optimize lock granularity during parallel transaction execution

	Optimize access to some objects to reduce copy costs

	Storage

	Limit the table name length from 64 to 50

	Block data and nonce data are encoded and written to storage in binary

	Remove the sorting and hashing of partial tables when the data is submitted

	Agreement

	Optimize the strategy of forwarding blocks [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/sync/sync_block_optimize.html#id1]

	Optimize the strategy of forwarding PBFT messages [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/consensus/pbft_optimize.html#id1]

	Optimize the structure of PBFT message [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/consensus/pbft_optimize.html#prepare]

	Optimize the strategy of broadcasting transactions [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/sync/sync_trans_optimize.html#id2]

	Optimize the strategy of forwarding transactions [https://fisco-bcos-documentation.readthedocs.io/zh_CN/latest/docs/design/sync/sync_trans_optimize.html#id3]

Fix

	Fix caching bugs in specific compatibility scenarios

Compatibility

2.1.0 is forward compatible. Old versions can upgrade to this new version by directly replacing the binaries for bug fixing purpose. But the new features of this version cannot be enabled unless you deploy a new chain with only new binaries from scratch.

	
	Recommended version
	Minimum version
	Description

	console
	1.0.7
	1.0.4
	

	SDK
	2.2.0
	2.0.4
	

	generator
	1.2.0
	1.1.0
	

	FISCO BCOS browser
	2.0.2
	2.0.0-rc2
	

	Solidity
	up to 0.5.2
	0.4.11
	

	amdb-proxy
	2.2.0
	2.0.2
	

Rollback to v2.1.x after compatible upgrading

After compatible upgrading to v2.2.0, we can rollback by simply replacing fisco-bcos binary file to v2.1.x.

 v2.3.0

v2.3.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.3.0]

v2.2.x upgraded to v2.3.0

	Compatible upgrade ：Directly replace the binary of the v2.2.x node with the v2.3.0 binary [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.3.0/fisco-bcos.tar.gz] , the upgraded version fixes bugs in v2.2.x, but will not enable the new features of v2.3.0, in normal scenarios, you can roll back to v2.2.x. For the rollback method, refer to the last section of this article.

	Full upgrade ：Refer to Installation to build a new chain and resubmit all historical transactions to the new node. The upgraded node includes new features in v2.3.0

	v2.3.0 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.3.0]

Change description

New features

	Paillier encryption：Paillier encryption is supported on the chain. To enable this function, please refer to here

	Group Signature: v2.3.0 supports group signature verification and ring signature verification, provides group signature server [https://github.com/FISCO-BCOS/group-signature-server] and group signature client [https://github.com/FISCO-BCOS/group-signature-client/tree/master-2.0] demo to realize the group signature generation, on-chain and on-chain verification.

	rPBFT: Based on the PBFT consensus algorithm, a new consensus algorithm rPBFT is implemented to minimize the impact of node size on the consensus algorithm, To configure rPBFT, please refer to Consensus Configuration and rPBFT Consensus Configuration

	KVTable：Provides key-based data reading and writing methods. Compared to Table contract CRUD interface, it is simpler and easier to use and maintain.

	Contract management: Provide contract life cycle management interface, including freeze, unfreeze, Contract Status Query and its related Authorization, Permission Query and other operations to facilitate the operation and maintenance personnel’s management of the on-chain contract

Update

	rpc.listen_ip split into channel_listen_ip and jsonrpc_listen_ip

	Provide contract write permission control interface, including contract write permission authorization、revoke和query

	Simplify parallel transaction configuration

	recommended to use MySQL directly connected storage mode instead of External storage mode

Fix

	Fix memory issues in specific compatibility scenarios

compatibility

Forward compatible, The old version can directly replace the program upgrade, but cannot launch the new features of this version. If you want to use the new features of this version, you need to relink.

	
	Recommended version
	Minimum version
	Description

	console
	1.0.9
	1.0.4
	

	SDK
	2.3.0
	2.0.4
	

	generator
	1.3.0
	1.1.0
	

	FISCO BCOS browser
	2.0.2
	2.0.0-rc2
	

	Solidity
	up to 0.5.2
	0.4.11
	

	amdb-proxy
	2.3.0
	2.0.2
	

Compatibility mode rollback to v2.2.x method

After a node is upgraded from v2.2.x to v2.3.0 in compatibility mode, the rollback can be completed directly by replacing the node binary back to v2.2.x.

 v2.4.0

v2.4.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.4.0]

v2.3.x upgraded to v2.4.0

	Compatible upgrade ：Directly replace the binary of the v2.3.x node with the v2.4.0 binary [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.4.0/fisco-bcos.tar.gz] , the upgraded version fixes bugs in v2.3.x, and includes 2.4.0 dynamic group life cycle management function, network statistics function, but will not enable all the features of 2.4.0, in normal scenarios, you can roll back to v2.3.x. For the rollback method, refer to the last section of this article.

	Full upgrade ：Refer to Installation to build a new chain and resubmit all historical transactions to the new node. The upgraded node includes new features in v2.4.0

	v2.4.0 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.4.0]

Change description

New features

	Support dynamic group life cycle management: Related RPC interfaces include generateGroup、startGroup、stopGroup、removeGroup、recoverGroup、queryGroupStatus

	Support network traffic and Gas statistics

	Precompiled contract supports Gas

	Support EVM Gas measurement standard plug-in configuration

	Add new interface sendRawTransactionAndGetProof push transaction and transaction receipt proof

Update

	The minimum requirement of CMake is modified to 3.7, supporting multi-source download of dependent libraries

Fix

	Fix the problem that the ecRecover interface is not available in the OSCCA-approved cryptography mode

	Fix the inconsistent return value of sha256 interface in OSCCA-approved cryptography mode and non-OSCCA-approved cryptography mode

compatibility

Forward compatible, The old version can directly replace the program upgrade, the replaced node fixes the bug in v2.3.x, and includes 2.4.0 dynamic group life cycle management function and network statistics function, to enable all new features in v2.4.0, you need to rebuild the blockchain.

	
	Recommended version
	Minimum version
	Description

	console
	1.0.9
	1.0.4
	

	SDK
	2.4.0
	2.0.4
	

	generator
	1.4.0
	1.1.0
	

	FISCO BCOS browser
	2.0.2
	2.0.0-rc2
	

	Solidity
	up to 0.5.2
	0.4.11
	

	amdb-proxy
	2.3.0
	2.0.2
	

Compatibility mode rollback to v2.2.x method

After a node is upgraded from v2.3.x to v2.4.0 in compatibility mode, the rollback can be completed directly by replacing the node binary back to v2.3.x.

 v2.5.0

v2.5.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.5.0]

v2.4.x upgraded to v2.5.0

	Compatible upgrade ：Directly replace the binary of the v2.4.x node with the v2.5.0 binary [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.5.0/fisco-bcos.tar.gz] , the upgraded version fixes bugs in v2.4.x.

	Full upgrade ：Refer to Installation to build a new chain and resubmit all historical transactions to the new node. The upgraded node includes new features in v2.5.0

	v2.4.0 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.5.0]

Change description

Added

	Add precompiled contract, address 0x5, implement modular exponential calculation.

	Add precompiled contract, address 0x6, implement point addition (ADD) of elliptic curve alt_bn128.

	Add precompiled contract, address 0x7, implement the scalar multiplication (MUL) of elliptic curve alt_bn128.

	Add precompiled contract, address 0x8, implement a pairing function on a specific pairing-friendly elliptic curve for zkSNARK verification.

	Add precompiled contract, address 0x9, implement blake2 hash function.

	Add flow control to achieve configurable node output bandwidth and maximum QPS

	Add ChainGovernance precompiled contract, address 0x1008, to implement role-based authority management

	Add SDK connection node supports OSCCA-approved SSL, can be configured whether to enable

	Add account management to freeze and unfreeze accounts

Changed

	In MySQL storage mode, the field type of the contract table is changed to mediumblob.

	The OSCCA-approved cryptography is modified from the compile option to the configuration item.

	Change the node to only accept the SDK connection of the same institution, can be configured whether to enable

	Paillier homomorphic encryption and group signature are enabled by default.

	The build_chain script uses the private key as the root certificate and institution certificate of secp256k1.

	The storage of PBFTBackup was changed from LevelDB to RocksDB.

	Refactor the libdevcrypto module, optimize the code structure, and use TASSL to implement OSCCA-approved SSL and non-national TLS connections.

	Optimize lock implementation of storage module openTable.

	Optimize block data encoding to parallel.

	Optimize the large object destructor to asynchronous.

	Optimize log output mechanism to reduce the impact of log output on performance.

	Optimize the number of threads of MHD and transaction pool modules to reduce memory usage.

	Optimize MySQL storage adapter implementation, optimized ZdbStorage code implementation.

Fixed

	Fix an issue where the Entry was modified in the same block, and subsequent transactions query the Entry result error.

	Fix the issue that transactions in non-leader node transaction pool cannot be packaged under Raft consensus.

	Fix a deadlock issue with CachedStorage.

	Fix the problem of recovering from Binlog when Binlog is turned on in some extreme cases.

	Fix an issue that Viewchange was rejected after a node restart under certain circumstances the view could not be restored quickly.

Compatibility

The old version can directly replace the program upgrade

	
	Recommended version
	Minimum version
	Description

	console
	1.0.10
	1.0.4
	

	SDK
	2.5.0
	2.0.4
	

	generator
	1.5.0
	1.2.0
	To use latest generator, please clone from master branch of generator repo.

	FISCO BCOS browser
	2.0.2
	2.0.0-rc2
	

	Solidity
	up to 0.5.2
	0.4.11
	

Compatibility mode rollback to v2.4.x method

After a node is upgraded from v2.4.x to v2.5.0 in compatibility mode, the rollback can be completed directly by replacing the node binary back to v2.4.x.

 v2.6.0

v2.6.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.6.0]

v2.5.x upgraded to v2.6.0

	Compatible upgrade ：Directly replace the binary of the v2.5.x node with the v2.6.0 binary [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.6.0/fisco-bcos.tar.gz] , new features and changes list below.

	Full upgrade ：Refer to Installation to build a new chain and resubmit all historical transactions to the new node. The upgraded node includes new features in v2.6.0

	v2.6.0 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.6.0]

Change description

Added

	Added support for Kylin operating system V10 (Kunpeng-920/ARM aarch64)

	Added support for Solidity 0.6

	Added time alignment mechanism between nodes

	Added support for IPv6

	Added group SDK whitelist mechanism, which is disabled by default

	Added getBlockheaderByNumber/getBlockHeaderByHash to get block header

	Added support for configuring block execution timeout time

Changed

	The rPBFT consensus algorithm introduces the VRF random number algorithm to further ensure the security of the consensus algorithm

	The evm engine aleth-interpreter is replaced by evmone

	Upgrade the EVMC interface version to 7.3.0

	Source code compilation requires GCC version not less than 5.4.0

	Support AMOP message routing to the node itself

	In MySQL storage mode, block and other data use binary format and enable compression

Fixed

	Fixed a minor memory leak caused by the transaction broadcast tag cache not being cleaned up

	Fixed the issue that transactions in the transaction pool of non-leader nodes cannot be packaged under the raft consensus

	In MySQL storage mode, when the select interface of TablePrecompiled is called in the Solidity contract writing interface, the occasional gas calculation inconsistency problem occurs

	The wrong certificate generated by the user causes coredump problems

	Using assembly in Solidity to call the Ethereum precompiled contract 0x1-0x9, return success(value:0) for wrong input

Compatibility

The old version can directly replace the program upgrade

	
	Recommended version
	Minimum version
	Description

	console
	1.1.0
	1.0.4
	

	SDK
	2.6.0
	2.0.4
	

	generator
	1.6.0
	1.2.0
	To use latest generator, please clone from master branch of generator repo.

	FISCO BCOS browser
	2.0.2
	2.0.0-rc2
	

	Solidity
	up to 0.6.10
	0.4.11
	

Compatibility mode rollback to v2.5.x method

After a node is upgraded from v2.5.x to v2.6.0 in compatibility mode, the rollback can be completed directly by replacing the node binary back to v2.5.x.

 v2.7.2

v2.7.2 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.7.2]

Change description

Fixed

	Fix the memory leak of the OSSCA-approved environment

v2.7.1 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.7.1]

Change description

Changed

	Improved the fisco-sync tool to pull snapshot data from Data-Stash when a new node joins a group

Fixed

	Fixed a problem with system table missing hash_2_blockheader table information in MySQL mode

	Fixed data conversion issue when node pulls data from Data-Stash in scalable mode

v2.7.0 [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.7.0]

v2.6.x upgraded to v2.7.0

	Compatible upgrade : Directly replace the binary of v2.6.x node with `v2.7.0 binary< https://github.com/FISCO-BCOS/FISCO-BCOS/releases/download/v2.7.0/fisco-bcos.tar.gz>`_ . The upgraded version fixes bugs in v2.6.x, and supports functions such as canceling event subscriptions, querying the topic information subscribed by nodes, and returning transaction receipts in batches, and the RPC interfaces related to node transactions and blocks return transactions and blocks The content of all fields and the receipt information returned by the node contain error information about transaction execution

	Comprehensive upgrade ：Refer to Install to build a new chain and resubmit all historical transactions to the new node. After the upgrade, the node contains all the new features of v2.7.0

	v2.7.0 Release Note [https://github.com/FISCO-BCOS/FISCO-BCOS/releases/tag/v2.7.0]

Change description

Added

	The contract life cycle management provides the revokeManager function, which can be used through the revokeContractStatusManager command in the v2.7.0 console

	Added a query interface for voting by committee members, which can be accessed through queryVotesOfThreshold and queryVotesOfMember in the v2.7.0 console use

	Support cancel event subscription

	Add methods to return receipts in batches getBatchReceiptsByBlockNumberAndRange and getBatchReceiptsByBlockHashAndRange

	Added getNodeInfo interface to return topic information subscribed by the node

	Table contract adds EQ condition query of address type

Changed

	MySQL storage mode supports MySQL 8.0

	Refactor the RPC interface related to transactions and blocks, and return all field contents of transactions and blocks

	The transaction push receipt contains the error message of the transaction execution result

	P2P module adds logic to read and write idle check

Fixed

	Solve the problem of compiling errors in gcc9 and clang12

	Precompiled contract error information is written into the receipt, giving a clearer error message

	Optimized disk encryption to solve the problem of large storage space occupation in disk encryption mode

	Fix the problem of node downtime caused by CachedStorage cleaning cache under MacOS system

	Fix the problem that the CNS contract name is too long in MySQL storage mode, which causes abnormal block submission

Compatibility

The old version can directly replace the program upgrade

	
	Recommended version
	Minimum version
	Description

	console
	2.7.0
	1.0.4
	

	Java SDK
	2.7.0
	2.6.1
	

	Web3SDK
	2.6.0
	2.0.4
	

	generator
	1.6.0
	1.2.0
	To use latest generator, please clone from master branch of generator repo.

	FISCO BCOS browser
	2.0.2
	2.0.0-rc2
	

	Solidity
	up to 0.6.10
	0.4.11
	

Compatibility mode rollback to v2.6.x method

After a node is upgraded from v2.6.x to v2.7.0 in compatibility mode, the rollback can be completed directly by replacing the node binary back to v2.6.x.

 Module design

Module design

This chapter introduces to the developers on FISCO BCOS the design concept of the platform, including structure and implementation of every model.

 Protocol description

Protocol description

Transaction structure and its RLP coding description

The transaction structure of FISCO BCOS has been increased or decreased some fields based on the transaction structure of the original Ethereum. The transaction structure fields of FISCO BCOS 2.0+ are as follows:

	name
	type
	description
	RLP index
	RLP index RC2

	type
	enum
	Transaction type, represents whether the transaction is a contract creatio -
	n or a contract transaction, initially an empty contract.
	-

	nonce
	u256
	A random number provided by the message sender, to uniquely identify the t 0
	ransaction.
	0

	value
	u256
	The amount of the transfer. FISCO BCOS does not use this field.
	5 5
	

	receiveAddress
	h160
	The receiver address. type is 0x0 when the contract is created.
	4 4
	

	gasPrice
	u256
	The unit price of gas in this transaction. In FISCO BCOS, it is fixed as 3 1
	00000000.
	1

	gas
	u256
	This transaction allows the maximum amount of gas consumed. In FISCO BCOS, 2
	this value can be configured.
	2

	data
	vector< byte >
	It is the data related to the transaction, or the initialization parameter 6
	when creating the contract.
	6

	chainId
	u256
	It records chain/transactional information of the transaction 7
	
	-

	groupId
	u256
	It records the group of the transaction 8
	
	-

	extraData
	vector< byte >
	Reserved field, recording transaction information, using “#” internally to
	separate information
	-

	vrs
	SignatureStruct
	Data that generated after transaction sender signs the hash on 7 field RLP 10,11,12
	code of the transaction
	7,8,9

	hashWith
	h256
	The hash of all fields (containing signature) after RPL code
	-
	-

	sender
	h160
	Transaction sender's address based on vrs -
	
	-

	blockLimit
	u256
	Transaction life cycle, the last processed block number of this transactio 3
	n, FISCO BCOS new field
	3

	importTime
	u256
	Unix timestamp when transaction enters txPool, FISCO BCOS new field -
	
	-

	rpcCallback
	function
	RPC callback after block generation, FISCO BCOS new field -
	
	-

The generation process of the hashWith field (also called transaction hash/transaction unique identifier) in RC1 is as follows:

[image: ../../_images/generate_hash_process.png]

It is similar with RC2 generation process, only that the transaction struct of rlp+hash in the first step is added with chainId, groupId, extraData the three fields.

Block structure and its RLP coding description

The block of FISCO BCOS consists of the following five parts:

rc1:

	name
	description
	RLP index

	blockHeader
	Block header RLP coding
	0

	transactions
	Transaction list RLP code
	1

	transactionReceipts
	Transaction receipt list RLP code
	2

	hash
	The hash encoded by block header RLP encoded
	3

	sigList
	The node signature list that is collected during PBFT consensus. Raft does not use this.
	4

rc2, rc3, 2.0 and newer

	name
	description
	RLP index

	blockHeader
	Block header RLP coding
	0

	transactions
	Transaction list RLP code
	1

	hash
	The hash encoded by block header RLP encoded
	2

	sigList
	The node signature list that is collected during PBFT consensus. Raft does not use this.
	3

	transactionReceipts
	Transaction receipt list RLP code
	4

The description of each field in the block header of FISCO BCOS is as follows:

	name
	type
	description
	RLP index

	parentHash
	h256
	parent blocks hash
	0

	stateRoot
	h256
	The root hash of the state tree
	1

	transactionsRoot
	h256
	The root hash of the transaction tree
	2

	receiptsRoot
	h256
	The root hash of the receipt tree
	3

	dbHash
	h256
	Distributed storage records the data written in a block by calculating the hash. A new field in FISCO BCOS.
	4

	logBloom
	LogBloom
	The Bloom filter consisting of transaction receipt logs. It is not used in FISCO BCOS currently.
	5

	number
	int64_t
	The block number, counts from 0.
	6

	gasLimit
	u256
	The upper limit of Gas consumed by all transactions in this block.
	7

	gasUsed
	u256
	The sum of the Gas used in all transactions in this block.
	8

	timestamp
	int64_t
	The unix timestamp of the packed block.
	9

	extraData
	vector

 RPC

RPC

RPC(Remote Procedure Call) is a set of protocols and interfaces that the client interacts with blockchain system. The user can query the blockchain related information (such as block number, blocks, node connection, etc.) and send the transaction request through RPC interface.

1 Concepts

	JSON [http://json.org/](JavaScript Object Notation): A lightweight data exchange format. It can represent numbers, strings, ordered sequences, and key-value pairs.

	JSON-RPC [https://www.jsonrpc.org/specification]: A stateless, lightweight remote procedure call protocol. The specification primarily defines several data structures and their processing rules. It is allowed to run in the same process based on much different messaging environments such as socket, http, etc. It uses JSON (RFC 4627 [http://www.ietf.org/rfc/rfc4627.txt]) as the data format. FISCO BCOS adopts the JSON-RPC 2.0 protocol.

2 Module architecture

[image: ../../_images/rpc.png]

The RPC module is responsible for providing the external interface of FISCO BCOS. The client sends the request through RPC, and RPC obtains the relevant response by calling book management module and p2p module, and returns the response to the client. The ledger management module manages the relevant modules at the underlying of blockchain through a multi-book mechanism, including consensus module, synchronization module, block management module, transaction pool module, and block verification module.

3 Data definition

3.1 Client request

The client request sent to blockchain node will trigger an RPC calling. The client request includes the following data members:

	jsonrpc: A string specifying the JSON-RPC protocol version, which must be accurately written as “2.0”.

	method: The name of the method to call.

	params: The parameters required to call the method. The method parameters are optional. Since FISCO BCOS 2.0 enables a multiple ledger mechanism, this specification requires that the first parameter passed in must be the group ID.

	id: The established unique ID of client. The ID must be a string, a numeric value or a NULL value. If the ID does not include one of these, it is considered as a notification.

The example format of RPC request package:

{"jsonrpc": "2.0", "method": "getBlockNumber", "params": [1], "id": 1}

Note:

	NULL is not recommended as the id value in the request object because the specification will use a null value to identify the request as an unknown id.

	Decimal is not recommended as the id value in request objects because of uncertainty.

3.2 Server response

When starting an RPC calling, all blockchain nodes must respond others except the notification. The response represents as a JSON object, using the following members:

	jsonrpc: A string specifying the JSON-RPC protocol version which must be accurately written as “2.0”.

	result: The correct result field. This member must be included when the response is processed successfully, and must not be included when the calling method causes an error.

	error: Error result field. The member must be included in the failure, and must not be included when no error is caused. Its parameter value must be an object defined in the 3.3 section.

	id: The member must be contained. Its value must match the id value in the corresponding client request. If the id of the request object shows errors (such as a parameter error or an invalid request), the value must be null.

The example format of RPC response package:

{"jsonrpc": "2.0", "result": "0x1", "id": 1}

Note:
The server response must contain a member result or error, but not both of them.

3.3 Error object

When an RPC calling encounters error, the returned response object must contain an error result field. For relative description and error codes, please check RPC error codes

4 RPC interface design

FISCO BCOS provides the rich RPC interfaces for client calling. They are divided into 3 categories:

	The query interface named beginning with get: For example, [getBlockNumber] interface, is to query the latest block number.

	[sendRawTransaction] interface: to execute a signed transaction and return response after blockchain achieves consensus.

	[call] interface: Executing a request will not create a transaction, so no blockchain consensus is required, but a response is returned immediately.

5 RPC interface list

Refer to RPC API Documentation

 Multi-group structure

Multi-group structure

To fit most business scenarios, FISCO BCOS supports various functions including multi-group activation, transactions among groups, data storage and block consensus in separation engined by multi-group structure. It can safely guard the system privacy but also eliminate the difficulty in operation and maintenance of blockchain system.

Note

For example:

Agency A, B, C, D constituted a blockchain network to operate Project 1. But now, A and B want to start Project 2 in the condition that C has no access to its data and transactions. How to realize it?

	1.3 series FISCO BCOS : Agency A and B build another chain to operate Project 2. Administrator needs to operate and maintain both chains and their ports.

	FISCO BCOS + ：Agency A and B build another group for Project 2. Administrator maintains only one chain.

Obviously both solutions can achieve privacy protection, but FISCO BCOS 2.0+ gets advantages in scalability, operation and maintenance and flexibility.

In multi-group structure, Networking is shared among groups. Groups can isolate messages of some ledger through [networking access and whitelist] (../security_control/node_management.md).

[image: ../../../_images/ledger.png]

Then, data will be isolated with other groups. Every group runs consensus algorithm independently or differently. Each ledger model contains three layers: Core, Access, Administration (from the bottom to the top). This three layers will cooperate to ensure stable operation of each group in FISCO BCOS platform.

Core

Core layer is responsible for inputing group data block, block information, system table and execution result into data base.

Storage is formed by two parts: State and amdb-proxy. State contains MPTState and StorageState who store the status information of transactions. StorageState has higher performance than MPTState, but it doesn’t store history records of block. amdb-proxy opens accesses of select, commit and update and operates contract table, system table, user table. It is pluggable and adaptable to multiple kinds of database. Currently supports RocksDB数据库 [https://github.com/facebook/rocksdb] and MySQLstorage.

[image: ../../../_images/storage.png]

Access

Access layer includes three models: TxPool, BlockChain and BlockVerifier.

	TxPool: interact with networking and administration layers. Store the transactions propagated by client ends or other nodes. Administration layer (mainly syncing and consensus models) outputs transactions in TxPool for propagation and block packing.

	BlockChain: interact with core layer and administration layer. The only access to bottom storage. Administration layer (syncing and consensus models) can check block number, acquire block and submit block through Blockchain.

	BlockVerifier: interact with administration layer, execute the block inputed by administration layer and sends result back to administration layer.

Administration

Administration layer includes two models: Consensus and Sync.

	Consensus: include two threads that are Sealer and Engine, one for packing transactions and another for executing consensus workflow. Sealer outputs transactions from TxPool and packs into new blocks. Engine executes consensus workflow, during which block is also executed, and submits execution result to Blockchain. Blockchain will input the information to bottom storage and trigger TxPool to delete all transactions in the on-chain block. and notifies transaction result to client ends using callbacks. Currently FISCO BCOS mainly supports consensus algorithm PBFT and Raft.

	Sync: propagate transactions and acquire new block.
During consensus workflow, leader is responsible for block packing and leader may be switched at any time. Therefore, it is necessary to ensure that the transactions in client ends will reach every node on chain, whose sync model will propagate the new transaction to the other nodes. Considering the inconsistency of machines’ performance on Blockchain, or increment of node may causing lagging of block number, Sync model offers block syncing function. Sync model sends the latest block number to other nodes so that they can download the newest block when finding the block number is lagging behind others.

 Overall network

Overall network

The overall network of FISCO BCOS can be categorized into four layers: fundamental, core, administration and access.

	fundamental: provide basic data structure and algorithms library

	core: implement the core logic of blockchain. It can be further divided into 2 parts:

	Chain core: realize the chain data structure, transaction execution engine and storage driving of Blockchain

	Internetworking core: realize the basic P2P networking, consensus mechanism and syncing mechanism of blockchain

	administration: realize the administration of blockchain, including parameter setting, ledger management and AMOP

	access: access for blockchain users including RPC interface of multiple protocols, SDK and interactive console.

FISCO BCOS boasts strong scalability due to multi-group structure and a strong and stable blockchain system based on reasonable model design.

This chapter emphasizes the group structure and transaction flow (submission, package, execution and write-on-chain of transaction) of FISCO BCOS.
empha

[image: ../../../_images/architecture.png]

	Multi-group structure

	Transaction flow

 Transaction flow

Transaction flow

1 Solution

User sends RPC request to node through SDK or curl command to start transaction. Node adds transaction to TxPool after receiving it. Sealer will constantly take out transactions from TxPool and pack them into block through certain conditions. After the blocks are generated, they will be verified as consensus by consensus engine. If there are no mistakes and consensus is made among nodes, the blocks will be taken on chain. When node using sync model to download missing blocks from other nodes, the execution and verification on blocks will be conducted also.

2 Structure

The overall structure is as below:

[image: ../../../_images/transaction_stream.jpg]

Node: Node of block

TxPool: transaction pool, the memory area maintained by node itself for temporarily saving recerived transactions

Sealer: block packager

Consensus Engine: consensus engine

BlockVerifier: block verifier, to verify the correctness of a block

Executor: execution engine, to execute single transaction

BlockChain: administration model of blockchain, the only authorized model. User should input block data as well as execute contextual data before submiting block interface. This administration model will combine the two types of data into one and send to the bottom storage

Storage: the bottom storage

main relations are as followed:

	User starts transaction through SDK or curl command to the connected node.

	When node receives transaction, if the current TxPool is not full, node adds transaction to TxPool and propagates to connected nodes; otherwise node discards transaction and output warning notification.

	Sealer constantly draws transactions from TxPool and packs them into blocks and sends to consensus engine.

	Consensus engine calls BlockVerifier to verify block and do consensus process. BlockVerifier calls Executor to execute every transaction within blocks. When the block is verified and is commonly agreed by nodes within network, consensus engine will send it to Blockchain.

	BlockChain receives block and checks the information (block number, etc.), then inputs the block data and table date to bottom storage and moves the block on chain.

3 Process

3.1 Contract Executive Process

Executive engine executes single transaction based on Executive Context, which is created by block verifier to cache data generated by executive engine during execution of temporarily-stored blocks. Executive engine supports both EVM contract and precompiled contract. EVM contract can be created through transaction or contract. The executive process is as below:

[image: ../../../_images/EVM_contract_execution.png]

After the EVM contract is created and saved in table sys_contracts of executive context, the address of EVM contract will auto-increment in global state starting from 0x1000001 (customizable). During the execution of EVM contract, Storage variable is saved in table c_(contract address) of executive context.

Precompiled contract can be divided into permanent type and temporary type: (1) permanent precompiled contract, integrated in bottom or components with fixed address; (2) temporary precompiled contract, dynamically created during execution of EVM contract and precompiled contract, the address will auto-increment in executive context starting from 0x1000 and ending at 0x1000000. Temporary precompiled contract is only valid in executive context. Precompiled contract has no Storage variable but has to operate table with process like below:

[image: ../../../_images/precompiled_contract_execution.png]

 Framework

Framework

FISCO BCOS realized a extensible consensus framwork with pluggable consensus algorithm. Currently it supports PBFT(Practical Byzantine Fault Tolerance) and Raft(Replication and Fault Tolerant) algorithm. The consensus model framework is as below:

[image: ../../../_images/architecture1.png]

Sealer thread

Sealer thread takes transaction out from txPool and seal transactions based on the highest block of nodes to generate new block and send it to engine thread. The sealer threads of PBFT and Raft are respectively PBFTSealer and RaftSealer.

Engine thread

Engine thread receives the new block locally or through internet, and finishes consensus process according to the received consensus information, and finally writes the consensused new block to blockchain, after which the transaction will be deleted from txPool. The engine threads of PBFT and Raft are respectively PBFTEngine and RaftEngine.

 Consensus algorithm

Consensus algorithm

Blockchain system adopts consensus algorithm to ensure consistency.
Theoretically, consensus is the process of commonly agreeing on a certain proposal. In distributed system, proposal is defined in a broad sense, which includes the sequence of event, who will be the leader and so on. In blockchain system, consensus is the process for consensus node to agree on transaction results.

Types of consensus algorithm

According to its tolerance on Byzantine Fault [https://zh.wikipedia.org/wiki/%E6%8B%9C%E5%8D%A0%E5%BA%AD%E5%B0%86%E5%86%9B%E9%97%AE%E9%A2%98] , consensus algorithms can be divided into Crash Fault Tolerance, CFT and Byzantine Fault Tolerance, BFT:

	CFT algorithms ：regular fault-tolerant algorithms, when it occurs to system malfunctions in network, disk or server crash down, they can still reach agreement on a proposal. Classic CFT algorithms include Paxos and Raft which has better performance and efficiency and tolerate less than a half of malfunction nodes;

	BFT algorithms ：Byzantine fault-tolerant algorithms, besides regular malfunctions happen during consensus, it can tolerate Byzantine fault like node cheating (faking execution result of transaction, etc.). Classic BFT algorithm includes PBFT, which has lower performance and tolerates less than one third of malfunction nodes.

FISCO BCOS consensus algorithm

FISCO BCOS realized pluggable consensus algorithm based on multi-group structure. With different group running different consensus algorithms, consensus processes are independent in each group. Currently, FISCO BCOS supports PBFT (Practical Byzantine Fault Tolerance) and Raft (Replication and Fault Tolerant) consensus algorithms:

	PBFT algorithm: BFT algorithm, tolerate less than one third of malfunction nodes and malicious nodes, able to reach final consistency;

	Raft algorithm: CFT algorithm, tolerate half of multifunction nodes except malicious nodes, able to reach consistency.

	Framework

	PBFT

	Raft

 PBFT

PBFT

PBFT(Practical Byzantine Fault Tolerance) consensus algorithm is still workable when it comes to minority malicious nodes (like faking message), as its message delivery system is tamper-resistant, non-forgeable and non-deniable due to digital signature, signature verification, hash and other cryptographic algorithms. Besides, it has optimized the past achievement by reducing the level of complexity of BFT from exponential to polynomial. In a system formed by (3*f+1) nodes, as long as there is more than (2*f+1) non-malicious nodes, it can reach consistency. For example: a system of 7 nodes can allow 2 nodes of Byzantine Fault.

FISCO BCOS system has realized PBFT consensus algorithm.

1. Core concepts

Node type, node ID, node index and view are core concepts of PBFT consensus algorithm. The basic concepts of blockchain system is introduced in Core concept.

1.1 Node type

	Leader/Primary: consensused node responsible for sealing blocks of transaction and block consensus. Each round of consensus will contain only one leader, who will be switched after a round to prevent it from faking block;

	Replica: replica node responsible for block consensus, each round of consensus contains multiple replica nodes with similar process each;

	Observer: observer node responsible for acquiring new block from consensused nodes or replica nodes, executing and verifying result, and adding the new block to blockchain.

Leaders and Replicas are named consensus nodes.

1.2 Node ID && node index

To prevent node from being malicious, each consensused node during PBFT process signs the message they send, and does signature verification on received message. Therefore, each node maintains a public and private key pair. Private key is to sign on the message it sends; public key as the node ID for identification and signature verification.

Node ID : public key for signature and the unique identification of consensused node, usually a 64-byte binary string, other nodes verifies the message package by the sender node ID.

Considering the length of node ID would take up bandwidths if containing this field in consensus message, so FISCO BCOS adapts node index through which each node ID can be located in the consensused node list maintained by each node. When sending message package, by the input node index other nodes can search out node ID for signature verification:

Node index : the location of each consensused node in the public node ID list

1.3 View

View is adapted in PBFT consensus algorithm to record consensus status of each node. Nodes with the same view maintain the same node list of Leader and Replicas. When Leader fails, the view will be switched. If it is switched successfully (at least 2*f+1 nodes have the same view), a new Leader will be picked according to the new view and start generating block. If not, it will keep switching until most nodes (equal or more than 2*f+1) reach the same view.

In FISCO BCOS system, the computing formula of leader index is:

leader_idx = (view + block_number) % node_num

The following drawing shows the switch of view in a FISCO BCOS system of 4(3*f+1, f=1) nodes where node 3 is Byzantine node:

[image: ../../../_images/pbft_view.png]

	the former 3 rounds of consensus: node 0, 1, 2 are leader nodes, 2*f+1 non-malicious nodes, nodes generates block in normal consensus status;

	the 4th round of consensus: node 3 is the leader and a Byzantine node, node 0, 2 doesn’t receive the block seal from node 3 on time, the view is being switched to new view view_new=view+1 and broadcast viewchange package, when the (2*f+1) viewchange packages in view_new are fully collected, nodes will switch it as the new view view_new and calculate the new leader;

	the 5th round of consensus: node 0 is the leader and keeps sealing blocks.

1.4 Consensus messages

PBFT model mainly includes PrepareReq, SignReq, CommitReq and ViewChangeReq 4 consensus messages:

	PrepareReqPacket: includes request package of block, leader generates it and broadcasts to all replica nodes who receives Prepare package and verifies PrepareReq signature, executes block and caches the execution result, in order to prevent Byzantine nodes from doing evil and ensure the certainty of the block execution result;

	SignReqPacket: signature request with block execution result, generated by consensused node after receiving Prepare package and executing block, SignReq request contains the hash and its signature of executed block, which are SignReq.block_hash and SignReq.sig, node broadcast SignReq to other consensus nodes for the consensus of SignReq (or block execution result);

	CommitReqPacket: commit request to confirm block execution result, generated by nodes who fully collected (2*f+1) SignReq request with the same block_hash and from different nodes. When CommitReq is broadcasted to other consensused nodes, which will add the latest block cached locally on chain after fully connecting (2*f+1) CommitReq requests with the same block_hash and from different nodes;

	ViewChangeReqPacket: request to switch view, when leader fails (networking abnormality, server crash down, etc.), other nodes will start switching view, ViewChangeReq includes the new view (marked as toView, the current view plus one), a node will switch its current view to toView after collecting (2*f+1) ViewChangeReq requests with toView and from different nodes.

Fields contained in the 4 types of messages are almost the same:

	Field
	Definition

	field
	definition

	idx
	current node index

	packetType
	type of request package (including PrepareReqPacket/SignReqPacket/CommitReqPacket/ViewChangeReqPacket)

	height
	in-process block number (usually local block number plus one)

	blockHash
	hash of in-process block

	view
	view of current node

	sig
	signature on blockHash of current node

PrepareReqPacket includes information of in-process block:

	package type
	field
	definition

	PrepareReqPacket
	block
	block data during consensus by all consensused nodes

2. System framework

The system framework is described as below:

[image: ../../../_images/pbft_architecture.png]

PBFT consensus process mainly contains 2 threads:

	PBFTSealer: PBFT sealer thread takes transaction out of txPool, encapsulating the sealed block into PBFT Prepare package and sending the package to PBFTEngine;

	PBFTEngine: PBFT consensus thread receives PBFT consensus message packet from PBFT sealer or P2P network. Blockverifier module is response to execute block, after the consensus process completes, transactions will be deleted from txPool.

3. Core process

PBFT consensus process includes 3 phases, Pre-prepare, Prepare and Commit:

	Pre-prepare: executes block, generates signature package and broadcast it to all consensused nodes;

	Prepare: collects signature package, when a node collects 2*f+1 signature packages, it will state that it is ready from committing blocks and start broadcasting Commit package;

	Commit: collects Commit package, when a node collects 2*f+1 Commit packages, it will commit the locally-cached latest block to data base.

[image: ../../../_images/pbft_process.png]

The following picture introduces the detail processes of each phase of PBFT:

 graph TB
 classDef blue fill:#4C84FF,stroke:#4C84FF,stroke-width:4px, font:#1D263F, text-align:center;

 classDef yellow fill:#FFEEB8,stroke:#FFEEB8,stroke-width:4px, font:#1D263F, text-align:center;

 classDef light fill:#EBF5FF,stroke:#1D263F,stroke-width:2px, font:#1D263F, text-align:center;

 subgraph Consensus process
 A((start))-->B
 B(acquire PBFT request type)-->|Prepare request|C
 B-->|Sign request|D
 B-->|Commit request|F
 C(Prepare is valid?)-->|Yes|G
 C-->|No|B

 G(addRawPrepare
cache Prepare request)-->H
 H(Empty block in Prepare?)-->|No|I
 H-->|Yes|T
 T(Switch view)

 I(execBlock
execute block in Prepare)-->J
 J(generateSignPacket
generate signature request)-->K
 K(addPrepareCache
cache executed block)-->L
 L(broadcastSignReq
broadcast signature request)

 D(isSignReqValid
signature request valid?)-->|Yes|M
 D-->|No|B
 M(addSignReq
cache received signature request)-->N
 N(checkSignEnough
signature requests reach 2*f+1?)-->|Yes|O
 N-->|No|B
 O(updateLocalPrepare
back up Prepare request)-->P
 P(broadcastCommitReq
broadcast Commit request, state that the node is ready to commit block)

 F(isCommitReqValid
 Commit request is valid?)-->|Yes|Q
 Q(addCommitReq
 cache Commit request)-->R
 R(checkCommitEnough
 Commit requests reach 2*f+1?)-->|Yes|S
 R-->|No|B
 S(CommitBlock
 commit the cached executed block to DB)

 class A,B light
 class C,G,H,I,J,K,L,T light
 class D,M,N,O,P light
 class Q,F,R,S light
 end

3.1 Leader to seal block

In PBFT consensus algorithm, consensus nodes generate blocks in turn, each round of consensus has one leader to seal block. Leader index can be calculated through formula (block_number + current_view) % consensus_node_num.

Node starts sealing block when finding that the leader index is the same with the index of itself. Block sealing is mainly conducted by PBFTSealer thread, with detail functions as below:

[image: ../../../_images/sealer.png]

	generate new empty block: acquire the latest block on blockchain, based on which new empty block will be generated (set the parent hash of the new block as the hash of the highest block, time stamp as the current time, delete transaction);

	seal transaction from txPool: acquire transaction from txPool after the new empty block is generated, and insert the transaction to the new block;

	encapsulate new block: Sealer thread seal the transaction and sets the sealer of the new block as self index, and calculate transactionRoot of all transactions according to the sealed transaction;

	generate Prepare package: encode the encapsulated new block to Prepare package, broadcast to all consensused nodes in group through PBFTEngine thread, other nodes receive Prepare package and start 3 phases of consensus.

3.2 Pre-prepare phase

Consensused nodes enters pre-prepare phase after receiving Prepare package. The workflow of this phase includes:

	Prepare package validity judgments：judge whether the Prepare package is replicated, whether the parent hash of block in Prepare request is the hash of the highest block currently (to avoid forking), whether the block number in Prepare request equals the latest block number plus one;

	cache valid Prepare package: if the Prepare request is valid, cache it locally to filter replicated Prepare requests;

	Empty block judgement：if the transaction quantity in the block contained in Prepare request is 0, start view switching of empty block by adding one, and broadcast view switching request to other nodes;

	execute block and cache execution result: if the transaction quantity in the block contained in Prepare request is more than 0, call BlockVerifier to execute block and cache the executed block;

	generate and broadcast signature package：generate and broadcast signature package based on the hash of executed block, state that this node has finished block execution and verification.

3.3 Prepare phase

Consensus nodes enter Prepare phase after receiving the signature package. The workflow of this phase is as below:

	signature package validity judgment：judge whether the hash of the signature package is the same with the hash of executed block cached in Pre-prepare phase, if not, judge whether the request belongs to future block (generation of future block is caused by lower performance of the node, who is still in the last round of consensus, to judge whether it’s future block: height field of the signature package bigger than the latest block number plus one); if not future block, it is invalid signature request which will be denied by node;

	cache valid signature package：node will cache valid signature package;

	judge whether the cached signature packages of block cached in Pre-prepare phase reach 2*f+1, commit packages if they are fully collected：if the quantity of signature packages of the block hash cached in Pre-prepare phase exceeds 2*f+1, then most nodes has executed the block and get the same result, and the node is ready to commit block and broadcast Commit package;

	write to disk the Prepare package cached in Pre-prepare phase for backup if signature packages are fully collected：to avoid more than 2*f+1 nodes crashing down before committing block to data base in Commit phase, the crashed nodes will again generate blocks after re-started, which will cause forking (the highest block of these nodes are different with the latest block of other nodes), therefore, it’s needed to backup the Prepare package cached in Pre-prepare phase to data base, so nodes can process the backup Prepare package first after re-started.

3.4 Commit phase

Consensus nodes enter Commit phase after receiving Commit package. The workflow of this phase includes:

	Commit package validity judgment：mainly judge whether the hash of Commit package is the same with the block hash cached in Pre-prepare phase, if not, judge whether the request belongs to future block (the generation of future block is caused by lower performance of the node, who is still is the last round of consensus, to judge whether it is future block: height field of Commit is bigger than the highest local block number plus one); if it’s not future block, it is invalid Commit request which will be denied by node;

	cache valid Commit package：nodes cache valid Commit package;

	judge whether the cached Commit packages of block cached in Pre-prepare phase reach 2*f+1, write the new block to disk if the Commit packages are fully collected：if the number of Commit requests of the block hash cached in Pre-prepare phase reaches 2*f+1, most nodes are ready to commit block and get the same execution result, call BlockChain to write the block cached in Pre-prepare phase to data base.

3.5 View switching process

When the 3 consensus phases of PBFT is time-out or nodes receive empty block, PBFTEngine will try to switch to higher view (the new view toView plus one) and start ViewChange process; nodes will also start ViewChange process when receiving ViewChange package:

	ViewChange package validity judgment: block number in a valid ViewChange request shouldn’t be less than the highest block number currently, the view should be higher than current node view;

	cache ViewChange package： avoid repeated process of the same ViewChange request, also the evidence to check if the node can switch view;

	collect ViewChange package：if the view in received ViewChange package equals the new view toView and the node has collected 2*f+1 ViewChange packages from different nodes whose views equal toView, then more than 2 thirds of nodes should be switched to toView; otherwise at least i third of nodes have other views, then the view of this node should be switched to the same with these nodes.

 Raft

Raft

1 Definitions

1.1 Raft

Raft（Replication and Fault Tolerant）is a partition tolerant consistency protocol, which ensures the system consistency in a N-node system with (N+1)/2 (ceil to int) working nodes. For example, a 5-node system allows 2 nodes to appear Byzantine error, like node crashing down, network partition, message delay. Raft is easier to understand than Paxos, and it is proved to have the same fault tolerance and performance with Paxos. For detail introduction please check the website [https://raft.github.io/] and dynamic demonstration [http://thesecretlivesofdata.com/raft/].

1.2 Node type

In Raft algorithm, each node owns one of the three identities: Leader, Follower and Candidate:

	Leader：interact with outsider, elected by Follower nodes, each consensus round contains one and only Leader node, who is responsible for taking transaction out of txPool, sealing block and writing it on chain;

	Follower：synchronize in light of leader node, select new leader node when the old leader becomes invalid;

	Candidate：contemporary identity of Follower nodes during election of leader.

1.3 Node ID & node index

In Raft algorithm, each nodes has a fixed and only ID (usually a 64-byte string), which is node ID; each consensus node maintains a public consensus node list, which records the ID of each consensus node. Node index refers to the location of the node in the list.

1.4 Terms

Raft algorithm divides time into Terms with uncertain length. Terms is sequential numbers. Each Term starts from election, if election succeeds, the current leader generates blocks; if fails and no leader is elected, a new Term and round of election will be started.
[image: ../../../_images/raft_terms.png].

1.5 Message

In Raft algorithm, nodes communicate with each other by sending messages. Current Raft model contains 4 kinds of message: VoteReq, VoteResp、Heartbeat, HeartbeatResp:

	VoteReq：vote request, sent by Candidate nodes to other nodes for leader election;

	VoteResp：vote response, used to respond the vote request by approve/disapprove the request;

	Heartbeat：heartbeat, sent by leader node periodically with 2 functions: (1) to maintain leader’s identity, which will not change as long as leader can send heartbeat and receive response from other nodes; (2) to replicate block data, leader node will encode block data to its heartbeat and broadcast the block after sealing it, other nodes receives the heartbeat and decode the block data and place the block to their buffers;

	HeartbeatResp：heartbeat response after node receives heartbeat, when the heartbeat contains block data, the heartbeat response will contain hash of the block;

Fields commonly contained in messages are:

	field
	definition

	idx
	self index of node

	term
	term of current node

	height
	highest block number of this node

	blockHash
	hash of the highest block of this node

Fields exclusive in each message type include:

 	message type
 	field
 	definition

 	VoteReq
 	candidate
 	Candidate node self index

 	lastLeaderTerm
 	Term of the last leader met by Candidate, the detail functions are introduced in 3.1.2 section

 	lastBlockNumber
 	Number of the latest block met by Candidate, the detail functions are introduced in 3.1.2 section

 	VoteResp
 	voteFlag
 	flag the vote request to mark whether it's approved or not, if not, mark the reject reason, the detail functions are introduced in 3.1.2 section

 	lastLeaderTerm
 	Number of the latest block met by nodes that receive VoteReq, the detail functions are introduced in 3.1.2 section

 	Heartbeat
 	leader
 	index of leader node who sends heartbeat

 	uncommitedBlock
 	when Leader node prepares to commit a new block, it will encode block data to the field and broadcast it through heartbeat, the detail functions are introduced in 3.2 section

 	uncommitedBlockNumber
 	block number of uncommitedBlock, the detail functions are introduced in 3.2 section

 	HeartbeatResp
 	uncommitedBlockHash
 	when receiving uncommitedBlock data from leader, nodes write the hash of uncommitedBlock (fingerprint) into heartbeat response, and send back to leader, stating that nodes have received the block data leader prepared to commit, the detail functions are introduced in 3.2 section

2 System framework

The system framework is as below:

[image: ../../../_images/raft_architecture.png]

	Raft Sealer：take transaction out of txPool and seal block and send to Raft Engine for consensus; delete the on-chain transactions from txPool;

	Raft Engine：start consensus process within consensus nodes and write the consensused block to blockchain.

3 Core process

3.1 Node status transfer

The relations of node types are shown as below. And the transfer of each status will be introduced in the following context:

[image: ../../../_images/raft_nodes_transfer.jpg]

3.1.1 Election

Raft consensus model adapts heartbeat mechanism to start leader election. Node is set as follower of Term 0 since started. As long as follower can receive valid heartbeat or RequestVote message from leader or candidate, it will stay in follower status. If follower doesn’t receive these messages in some time (which is called Election Timeout), it will assume that the leader is invalid and increase its Term to become candidate, then a new round of leader election will be started:

	Follower increases its Term, and becomes Candidate;

	Candidate votes for itself and broadcasts RequestVote to other node for votes;

	Candidate node keeps in Candidate status unless: (1) the node wins election; (2) Candidate receives heartbeat from other node during election; (3) no leader is elected after Election Timeout. Raft algorithm avoid even votes of nodes by random timer to ensure only one node will be time-out and enter candidate status and get most votes to become leader.

3.1.2 Vote

Node will respond with different strategies according to the content of received VoteReq:

	Term of VoteReq less than or equal self Term

	If the node is Leader, disapprove the request. Candidate becomes Follower after receiving the response and increases timeline of voting;

	If the node is not leader:

	If Term of VoteReq is less than self Term, disapprove the request. If Candidate receives more than half of the same response, it is time-out and becomes follower and increase timeline of voting;

	If Term of VoteReq equals self Term, disapprove the request and process no more. Each node can only vote to one Candidate on a first come basis, in order to ensure there will be only one Candidate will be elected to be Leader in each round.

	lastLeaderTerm of VoteReq less than self lastLeaderTerm

Each node has a lastLeaderTerm field to indicate the Term of the last Leader it has witnessed. LastLeaderTerm can only be updated by Heartbeat. If the lastLeaderTerm in VoteReq is less than self lastLeaderTerm, then it has problem for leader to access the Candidate. If currently Candidate is in internet silos, it will keep sending vote request to outside, therefore nodes need to disapprove the request to stop it.

	lastBlockNumber of VoteReq is less than self lastBlockNumber

Each node contains a lastBlockNumber field to indicate the block number of the latest block witnessed by nodes. During block generation, nodes will replicate block (please check 3.2 section for details), during which there can be part of nodes who receive the new block data and part of nodes who don’t. This will cause inconsistency in lastBlockNumber of each node, to solve which nodes need to vote for node who has the newest data. Therefore, node will disapprove the vote request under this circumstance.

	node vote for the first time

To avoid Follower restarting election due to network dithering, it is stipulated that for the first time of node to vote, it should disapprove the request, and set its firstVote field to the index of the Candidate.

	Not disapprove vote request in step 1~4

Approve the vote request.

3.1.3 Heartbeat time-out

When Leader becomes internet silos, though it can send heartbeat which can also be received by Follower, it cannot receive heartbeat response. In this situation Leader suffers internet problems, which can stuck the system for it can still send heartbeat to Follower who therefore cannot transfer status. To solve this problem, the model adopts heartbeat time-out mechanism. Leader will record each heartbeat response, if it stops update overtime, Leader will abandon its identity and transfer to Follower.

3.2 Block replication

Raft protocol strongly depends on the usability of Leader to ensure consistency of group data, because data can only be transferred from Leader to Follower. When Raft Sealer commits block data to group Leader, Leader will set the data to uncommitted status first, attach it with heartbeat for Follower to replicate and respond. When half of nodes are confirmed having received the data, it will write the data into data base, then the block data transfer to committed status. After that, Leader broadcasts the data to Follower through Sync model. The process of block replication is as below:

 sequenceDiagram
 participant Sealer
 participant Leader
 participant Follower

 Sealer->>Leader: seal the transaction to block, stuck itself
 Leader->>Follower: encode the block to RLP code and attach to heartbeat package]
 Note right of Follower: decode heartbeat package, write
 the decoded block
 to cache
 Follower->>Leader: send ACK
 loop collect ACK
 Leader->>Leader: check if most nodes has received and replicated block
 end
 Leader->>Sealer: stop stuck
 Leader->>Leader: execute block
 Leader->>Leader: abandon on-chain transaction

The conditions of RaftSealer to verify whether the transaction can be sealed include: (1) Leader node; (2) there is non-syncing peer; (3) uncommitBlock field is empty. Only when 3 of them are met can the transaction be sealed.

 <no title>

 Account Management

Account Management

This document describes the design of the freezing/unfreezing account operations and their operation permissions.

Important

The account life cycle management operation on the account supports storagestate storage mode, but not mptstate storage mode.

noun explanation

Account management related operations include freezeAccount, unfreezeAccount, getAccountStatus and authority management related operations.

	freezeAccount : Reversible operation, the interfaces of a frozen account can not deploy or execute transaction

	unfreezeAccount : Undo the freezeAccount operation, the interfaces of an unfrozen account can deploy or execute transaction

	getAccountStatus : Query the status of a account to return the status of available/frozen

The authority management related operations please refer to ChainGovernance.

Important

The operation of freezing a account will not modify the original account content, and will only be recorded through a field.

The state transition moments are shown below:

	
	available
	frozen

	freeze
	Success
	Fail

	unfreeze
	Fail
	Success

Implementation

Record of Account status

	A existing field frozen is used to record whether the account has been frozen. The default of this field is false, indicating that it is available. When frozen, the value is true.

Note:

	False will be returned when querying the field for the account table with no field frozen;

Judgment of account status

In the Executive module, the values of frozen fields are obtained according to the address of an account, then the account can deploy and execute transaction smoothly, or an exception is thrown to indicate that the account has been frozen after judgment.

Important

Account management related operations can only be performed on 2.5 and above.

 CNS

CNS

Introduction

The process to call smart contract in Ethereum includes:

	program contract;

	compile contract and get abi description of API;

	deploy contract and get address;

	encapsulate contract abi and address, and call contract by SDK or other tools.

From the process of calling contract, we know that contract abi and address are needed. This can lead to following problems:

	contract abi is a long JSON string, no need to be sensed by caller;

	contract address is a 20-byte magic number, difficult to remember, and contract cannot be accessed again if lost it;

	one or more callers need to update contract address after re-deployment;

	inconvenient for version management and grey release of contract.

To solve the problems and offer better experience for callers, FISCO BCOS has proposed CNS.

Terms definition

	CNS (Contract Name Service) offers records of map relations between contract name and address and query function, so caller can call contract by easier contract name.

	CNS information includes contract name, version, address and abi.

	CNS table stores CNS information

Advantages of CNS

	simplify the call of contract;

	support transparent update and grey release of contract.

Comparison with ENS

ENS is Ethereum Name Service.

ENS has similar functions with DNS(Domain Name Service), though it doesn’t offer Internet address. It expresses contract address and wallet address in the form of xxxxxx.eth web address for contract storage and payment transfer. Comparing it with CNS:

	ENS maps both contract address and wallet address, so does CNS; contract abi will be empty when it’s wallet address.

	ENS has auction function, CNS does not.

	ENS supports multi-level domain name, CNS does not.

Model structure

[image: ../../../_images/cns_architecture.png]

CNS structure

Core process

The processes to deploy contract and call contract by SDK are:

[image: ../../../_images/deploy_and_call.png]

process to deploy contract and call contract by SDK
	when deploying contract, SDK generates Java class of contract, call its deploy API to get address, and call insert API of CNS contract to write CNS information on chain.

	when calling contract, SDK imports Java class of contract and loads instantiation. Load API can input contract address (in Ethereum type) or contract name and composition of contract version (in CNS type). SDK handles CNS and gets address by calling CNS model.

	For contract lacking of version number, SDK is defaulted to call the latest version of contract.

	abi information of contract on chain belongs to optional fields.

Data structure

CNS table structure

CNS information is stored in system tables with independent ledgers. Definition of CNS table:

 	Field
 	Type
 	Null
 	Key
 	Expain

	name	string	No	PRI	contract name, name and version are joint primary key

	version	string	No		contract version, name and version are joint primary key

	address	string	No		contract address

	abi	string	YES		contract abi

	status	string	No		general fields in distributed storage, “0” means available, “1” means removed

Contract API

pragma solidity ^0.4.2;
contract CNS
{
 function insert(string name, string version, string addr, string abi) public returns(uint256);
 function selectByName(string name) public constant returns(string);
 function selectByNameAndVersion(string name, string version) public constant returns(string);
}

	CNS contract is not exposed to users. It is the interaction API of SDK and CNS table.

	insert API can write CNS information to blockchain, containing 4 parameters: contract name, version, addr and abi information. SDK needs to verify if the composition of name and version has been already recorded in database. Only when it’s not repeated can it be written on chain for transaction. When node executing transactions, precompiled logic will Double Check the data, discard the transaction if repeated. Insert API will only increase but not modify contents in CNS table.

	selectByName API’s parameter is contract name, returns all version records of this contract.

	selectByNameAndVersion API’s parameter are contract name and version, returns the unique address of this version of contract.

Update CNS table

Precompiled contract is an efficient smart contract implemented by C++ in FISCO BCOS structure for configuration and management of system information. The process of transaction execution of nodes in precompiled logic adopted by FISCO BCOS is:

CNS contract belongs to precompiled contract. Nodes insert and inquire CNS table through the built in C++ code logic, not through EVM. So CNS contract offers API description of function but not implementation. CNS contract’s precompiled address is presetted to 0x1004.

Return of contract API

selectByName and selectByNameAndVersion API returns string in Json. Example:

[
 {
 "name" : "Ok",
 "version" : "1.0",
 "address" : "0x420f853b49838bd3e9466c85a4cc3428c960dde2",
 "abi" : "[{\"constant\":false,\"inputs\":[{\"name\":\"num\",\"type\":\"uint256\"}],\"name\":\"trans\",\"outputs\":[],\"payable\":false,\"type\":\"function\"},{\"co
nstant\":true,\"inputs\":[],\"name\":\"get\",\"outputs\":[{\"name\":\"\",\"type\":\"uint256\"}],\"payable\":false,\"type\":\"function\"},{\"inputs\":[],\"payable\":false,\
"type\":\"constructor\"}]"
 },
 {
 "name" : "Ok",
 "version" : "2.0",
 "address" : "0x420f853b49838bd3e9466c85a4cc3428c960dde2",
 "abi" : "[{\"constant\":false,\"inputs\":[{\"name\":\"num\",\"type\":\"uint256\"}],\"name\":\"trans\",\"outputs\":[],\"payable\":false,\"type\":\"function\"},{\"co
nstant\":true,\"inputs\":[],\"name\":\"get\",\"outputs\":[{\"name\":\"\",\"type\":\"uint256\"}],\"payable\":false,\"type\":\"function\"},{\"inputs\":[],\"payable\":false,\
"type\":\"constructor\"}]"
 }
]

SDK_API

SDK developer can realize registration and query of CNS through the following 2 APIs in org.fisco.bcos.web3j.precompile.cns.

registerCns

	Description：public TransactionReceipt registerCns(String name, String version, String addr, String abi)

	Function：write contract information to chain

	Parameter：name——contract name, version——contract version, addr——contract address, abi——contract abi

	Return：transaction receipt, containing result and error information (if there is).

resolve

	Description：public String resolve(String contractNameAndVersion)

	Function：inquire contract address based on contract name and version

	Parameter：contractNameAndVersion——contract name+contract version information

	Return：contract address, API throw exception if no contract information specified in parameters

	Illustration：contractNameAndVersion splits contract name and version through :, SDK is defaulted to call the latest version of contract for query when lacking of version information

Note：

	Before calling API, sol contract needs to be transferred to Java class and placed it to the right folder together with abi, bin files. For detail operations please check Java SDK;

	The operation examples of the 2 API are introduced in the implementation of deployByCNS and callByCNS APIs inConsoleImpl.java [https://github.com/FISCO-BCOS/console/blob/master-2.0/src/main/java/console/contract/ContractImpl.java].

Operation tool

Console offers functions to deploy, call contract and inquire on-chain contract based on name. For the detail operations please refer to here for the console user manual of version 2.6 and above, and here for the console user manual of version 1.x

Commands of console:

	deployByCNS：deploy contract through CNS

	callByCNS：call contract through CNS

	queryCNS：inquire CNS table information by contract name, version number (optional parameter)

 Contract Management

Contract Management

This document describes the design of the freezing/unfreezing operations(referred to as contract lift cycle status management operation on below) and their operation permissions in contract life cycle management.

Important

The contract life cycle management operation on the contract supports storagestate storage mode, but not mptstate storage mode.The contracts mentioned here are only Solidity contracts and do not include pre-compiled contracts currently.

noun explanation

Contract management related operations include freezeContract, unfreezeContract, grantContractStatusManager, getContractStatus, listContractStatusManager.

	freezeContract : Reversible operation, the interfaces of a frozen contract can not be called

	unfreezeContract : Undo the freezeContract operation, the interfaces of an unfrozen contract can be called

	getContractStatus : Query the status of a contract to return the status of available/frozen

	grantContractStatusManager : Grant the account’s permission of contract status managememt

	listContractStatusManager : Query a list of authorized accounts that can manage a specified contract

Important

The operation of freezing a contract will not modify the original contract content, including logic and data, and will only be recorded through a field.

The state transition moments are shown below:

	
	available
	frozen

	freeze
	Success
	Fail

	unfreeze
	Fail
	Success

Implementation

Record of Contract status

	A new field frozen is used to record whether the contract has been frozen. The default of this field is false, indicating that it is available. When frozen, the value is true.

	A new field authority is used to record accounts that can manage contract status. Each account with permission corresponds to one line of authority records.

Note:

	False will be returned when querying the field for the contract table with no field frozen;

	When a contract is deployed, the tx.origin will be written to field authority by default.

	When an interface of contract A was called to create contract B, the tx.origin and the authorization of contract A is written to field authority of contract B by default.

Judgment of contract status

In the Executive module, the values of frozen fields are obtained according to the address of a contract, and the transaction will be executed smoothly, or an exception is thrown to indicate that the contract has been frozen after judgment.

Judgment of authority

	The authority to update contract status needs to be determined. Only the accounts in authority list can set the contract status;

	The authority to grant authorization needs to be determined. Only the account in the authority list can grant other accounts the authorization to manage the contract;

	Any account can query contract status and authorization list.

Interfaces of contract life cycle management

A contract life cycle management precompiled named ContractLifeCyclePrecompiled is added with 0x1007 address, which is used to set and query contract status.

contract ContractLifeCyclePrecompiled {
 function freeze(address addr) public returns(int);
 function unfreeze(address addr) public returns(int);
 function grantManager(address contractAddr, address userAddr) public returns(int);
 function getStatus(address addr) public constant returns(uint,string);
 function listManager(address addr) public constant returns(uint,address[]);
}

Description of return code

	code
	message

	0
	success

	-51900
	the contract has been frozen

	-51901
	the contract is available

	-51902
	the contract has been granted authorization with same user

	-51903
	the contract address is invalid

	-51904
	the address is not exist

	-51905
	this operation has no permissions

Important

Contract management related operations can only be performed on 2.3 and above.

 Flow Control

Flow Control

In order to realize the flexible service of the blockchain system and prevent multiple groups from running in the same process under the multi-group architecture, some groups occupy too many resources to interfere with other groups. FISCO BCOS v2.5.0 introduces flow control.

architecture

The following figure is a block diagram of flow control, which mainly includes SDK request rate limit and network flow limit. The former limits the request rate of SDK to nodes, and the latter limits the bandwidth flow of nodes and prevents blocks by limiting block sync and AMOP request traffic. Too many block sync and AMOP request message packets affect the performance of the consensus module.

[image: ../../../_images/flow_control.png]

SDK request rate limit

SDK request rate limit includes node-level request rate limit and group-level request rate limit:

	Node-level request rate limit: Limit the total request rate from the SDK client to the node. When the request rate from the SDK to the node exceeds the specified threshold, the node will reject the SDK request and achieve the QoS goal while preventing excessive SDK requests from causing node abnormalities.

	Group level request rate limit: Limit the request rate from the SDK client to the group. When the request rate from the SDK to the specified group exceeds the threshold, the group will reject the SDK request.

Note

	When request rate limiting is enabled for both nodes and groups:
	
	After receiving the request packet sent by the SDK, the blockchain node first calls the node-level request rate limiting module to determine whether the request should be received;

	The received request continues to enter the group-level request rate limiting module, and the request that passes the group-level request rate limiting module check will eventually be forwarded to the corresponding group and processed.

Node network flow control

Similar to the SDK request rate limit, the network flow limit also includes node-level flow control and group-level flow control:

	Node-level flow control: Limit the average bandwidth of the node. When the average bandwidth of the node exceeds the threshold, the node will suspend the sending of the block after receiving the block sync request, and will also reject the received AMOP request to avoid block sync and AMOP message packet sending impact the node consensus;

	Group level flow control: Limit the average bandwidth of each group. When the average bandwidth of the group exceeds the threshold, the group will suspend the block sending and AMOP request packet forwarding logic, and give priority to the network traffic to the consensus module.

Note

When the flow control function is enabled for both nodes and groups:

	When the node receives the AMOP request from the client, it calls the node-level flow control module to determine whether it can receive the AMOP request;

	When a group receives a block request from another node corresponding to the group, and before the group replies to the block, (1) call the node-level flow control module to determine whether the average bandwidth of the node exceeds the set threshold; (2) call the group-level flow control module to determine whether the outgoing bandwidth of the group exceeds the set threshold. If and only if the average outgoing bandwidth at the node level and the group level does not exceed the set threshold, the group will reply to the block.

Configuration options

Note

	The node-level flow control configuration options are located in `` config.ini``, please refer to here

	The group-level flow control options are located in `` group. {Group_id} .ini``, for details, please refer to here

 OSCCA algorithm

OSCCA algorithm

Design objective

Bases on [national cryptography standard] (http://www.gmbz.org.cn/main/bzlb.html), FISCO has realized the national encryption and decryption, signature, verification, Hash algorithm, national cryptography SSL communication protocol, and integrated into the FISCO BCOS platform, and to achieve full support for commercial password identified by the National Cryptographic Bureau.

The national cryptography version of FISCO BCOS replaces the cryptographic algorithms of the underlying modules such as transaction signature verification, p2p network connection, node connection, and data disk encryption with the national cryptography algorithm.

The different features between national cryptography version of FISCO BCOS and the standard version are as follows:

	
	standard FISCO BCOS
	national cryptography FISCO BCOS

	SSL connect
	Openssl TLSv1.2 protocol
	national cryptography TLSv1.1 protocol

	signature verification
	ECDSA signature algorithm
	SM2 signature algorithm

	Message digest algorithm
	SHA-256 SHA-3
	SM3 message digest algorithm

	Disk encryption algorithm
	AES-256 encryption algorithm
	SM4 encryption algorithm

	Certificate mode
	OpenSSL certificate mode
	National cryptography double certificate mode

	Contract compiler
	Ethereum solidity compiler
	National cryptography solidity compiler

(Note: National cryptography algorithms SM2, SM3, SM4 are developed based on [national cryptography standards] (http://www.gmbz.org.cn/main/bzlb.html))

System framework

The overall framework of the system is shown below:

[image: ../../../_images/guomishakehand.png]

National cryptography SSL 1.1 establish process

The authentication among the nodes of national cryptography FISCO BCOS selects the ECDHE_SM4_SM3 cipher suite of the national cryptography SSL 1.1 for the establishment of SSL connect. The differences are shown in the following table:

	
	OpenSSL
	National cryptography SSL

	Cipher suite
	Adopts ECDH, RSA, SHA-256, AES256 and other cryptographic algorithms
	Adopts national cryptography

	PRF algorithm
	SHA-256
	SM3

	Key exchange method
	Transmits elliptic curve parameters and the signature of current message
	Current message signature and encryption certificate

	Certificate mode
	OpenSSL certificate mode
	National cryptography double certificate modes, encryption certificate and signature certificate.

Data structure difference

The difference in data structure between the national cryptography version and the standard version of FISCO BCOS is as follows:

	Algorithm type
	Standard FISCO BCOS
	National cryptography FISCO BCOS

	signature
	ECDSA (Public and private key length: 512 bits, 256 bits)
	SM2 (Public and private key length: 512 bits, 256 bits)

	hash
	SHA3 (Hash string length: 256 bits)
	SM3 (Hash string length: 256 bits)

	Symmetric encryption and decryption
	AES (Encryption key length: 256 bits)
	SM4 (Symmetric key length: 128 bits)

	Transaction length
	520bits(identifier is 8bits, signature length is 512bits)
	1024bits(128 bytes, public key is 512bits, signature length is 512bits)

 Other features

Other features

For better user experience in smart contract calls and higher security, FISCO BCOS adopts Contract Name Service, or CNS, OSCCA alogorithm and disk encryption.

	Contract Name Service

Smart contracts are called by address in Ethereum, which may occurs to following problems:

	contract abi is a long JSON string, no need to be sensed by caller

	contract address is 20-byte magic number, difficult to remember and if lost contract will not be accessible

	One or more callers need to update contract address for re-deployment

	inconvenient for version management and grey release of contract

CNS of FISCO BCOS offers records of map relations between contract name and contract address and query function, so caller can call contract through easier contract name.

	OSCCA alogorithm

To support home-made cryptographic algorithm, FISCO BCOS has realized and integrated OSCCA encryption and decryption, signature, signature verification, hash, OSCCA SSL communication protocol to fully support business encryption proved by OSCCA.

	Disk encryption

Considering that data is accessible to each agency in consortium chain structure, FISCO BCOS adopts disk encryption to encrypt data stored in node database and key manager to store encryption key, ensuring data secrecy.

	CNS

	OSCCA algorithm

	Disk encryption

	Network compression

	Contract Management

	Account Management

	Network traffic and Gas statistics

	Flow Control

 Network compression

Network compression

In external network environment, the performance of blockchain system is limited by the network bandwidth. For minimizing the impact of network bandwidth on system performance, FISCO BCOS supports network compression from version relase-2.0.0-rc2. This function mainly performs network packet compression on transmit(tx) data (TXD) and packet uncompression on receive(rx) data (RXD), and transmits the unpacked data to the upper module.

System framework

Network compression is mainly implemented in P2P network underlying. The system framework is as follows:

[image: ../../../_images/network_compress.png]

Network compression mainly consists of two processes:

	packet compression on transmit(tx) data: When the group layer sending data through the P2P layer, if the data packet size exceeds 1 KB, then packet is sent to the target node after compression.

	packet uncompression on receive(rx) data: After receiving the data packet, the node first determines whether the received data packet is compressed. If the data packet is compressed, to decompress it and transmit to the specified group, otherwise to transmit the data transmitted to the corresponding group directly.

Core implementation

Considering performance, compression efficiency, and etc., we selected Snappy [https://github.com/google/snappy] to implement data packet compression and decompression. In this section, we mainly introduce the implementation of network compression.

Data compression flag

FISCO BCOS’s network packet structure is as follows:

[image: ../../../_images/network_packet.png]

The network data packet mainly includes two parts: header and data. The header contains 16 bytes. The meanings of the fields are as follows:

	Length: the length of data packet.

	Version: extension bit, for extending network module function.

	ProtocolID: storing the group ID and module ID of Destination Network Address Translation (DNAT) for multi-group packet routing. Currently it supports up to 32767 groups.

	PaketType: tagged data packet type.

	Seq: data packet serial number

**Network compression module only compresses network data but not data packet header. **

Considering that compressing and decompressing small data packets can not save data space and waste performance, in the data compression process, the undersize packets are not compressed, and only the data packets with size larger than c_compressThreshold are compressed. The default value of c_compressThreshold is 1024 (1KB). We have extended the highest bit of Version as a packet compression flag:

[image: ../../../_images/network_version.png]

	When the highest value of Version is 0, indicating that the data which is corresponding to data packet is uncompressed.

	When the highest value of Version is 1, indicating that the data which is corresponding to data packet is compressed.

Processing flow

In the following, we take a node in group1 sending network message packet groupA to other nodes(such as sending a transaction, a block, a consensus message packet, etc.) as an example to detail the key processing flow of network compression module.

Transmit(tx) data processing flow:

	Group1’s group module passes packetA to P2P layer;

	When P2P determines that the packetA is greater than c_compressThreshold, then calls the compression interface to compress packetA, otherwise it directly passes packetA to the encoding module;

	The encoding module adds header to packetA with data compression information, ie: if packetA is compressed, the highest value of Version(header) is set to 1; otherwise, it is set to 0;

	P2P transmits the encoded data packet to the destination node.

Receive(rx) data processing flow:

	After the target machine receives the data packet, the decoding module separates the packet header, and determines whether the network data is compressed by the highest value of Version is 1 or not;

	If the network packet is compressed, the decompression interface is called to decompress part of data, and transmit the decompressed data to the specified module of group according to the GID and PID attached to the packet header; otherwise, the data packet is directly passed to the upper module.

Compatibility note

	Data Compatibility: not involve the changes of stored data;

	Network Compatibility rc1: Forward compatible, only the relase-2.0.0-rc2 node has network compression.

 Network traffic and Gas statistics

Network traffic and Gas statistics

ISCO BCOS 2.0 introduces a multi-group architecture that allows a node to start several groups. This architecture can be quickly expanded in parallel, simplifying operation and maintenance complexity, and reducing management costs, but because a node process runs multiple groups, Increasing the complexity of group monitoring. Considering that real-time monitoring of system resource usage is very important in actual production systems, FISCO BCOS v2.4.0 introduces statistical logs and implements group-level network traffic statistics and transaction-level Gas consumption statistics.

Module architecture

The following figure is a block diagram of network traffic and Gas statistics. The FISCO BCOS node calculates the network and Gas consumption information in the group in real time and outputs it to the statistics log:

[image: ../../../_images/network_gas_stat.png]

Network traffic statistics are regularly output to the statistics log. The current statistics of network traffic mainly include:

	SDK-to-node network traffic: statistics of RPC traffic, transaction push traffic, and event push traffic of each group

	P2P network traffic: Count the network traffic generated by P2P network interaction between modules due to synchronization and consensus among groups

	Total network traffic: the total network consumption of each group network, including the network traffic from the SDK to the node and the P2P network traffic

Gas statistic output is triggered by block order placement. Each block placed will output the corresponding Gas consumption information to the statistics log. The current statistics include:

	Gas consumption information for each block

	Gas consumption information for each transaction

Detailed description of statistical logs

Note

	Statistics log level is info

	The statistics log is divided every hour

Network traffic statistics log

In order to facilitate developers to diagnose the system based on the network traffic statistics log, FISCO BCOS v2.4.0 makes a breakdown according to the relevant modules of the traffic when counting network traffic. Here is a detailed introduction to the format and keyword meaning of network traffic statistics logs.

Note

	The unit of network traffic output to the log is byte

	The network statistics function only counts the total network consumption of a certain period of time. After the statistical information is output to the log, the counter will be cleared and the next round of statistics will be restarted.

Network traffic from SDK to node

The module keyword for network traffic statistics logging from SDK to node is SDK, which not only counts the total outgoing and incoming traffic between each group and SDK, but also subdivides the traffic generated by RPC requests and event push traffic and transaction push traffic. Examples of logs are as follows:

info|2020-04-24 12:58:41.173045|SDK|,g=1,SDK_RPCIn=10023,SDK_EventLogIn=500,SDK_totalIn=10523,SDK_RPC_Out=0,SDK_Txs_Out=0,SDK_EventLog_Out=0,SDK_total_Out=0

Keyword description

	Log keywords
	Explanation

	g
	Group ID

	SDK_RPCIn
	RPC request incoming traffic

	SDK_EventLogIn
	Inbound traffic related to event push

	SDK_totalIn
	The total inflow of the group

	SDK_RPC_Out
	RPC requests outgoing traffic

	SDK_Txs_Out
	Outgoing traffic generated by transaction push

	SDK_EventLog_Out
	Outgoing traffic generated by event push

	SDK_total_Out
	Total outgoing traffic of the group

P2P network traffic

The module keyword for P2P traffic statistics logging among groups is P2P, which not only counts the total P2P outgoing and incoming traffic of each group, but also subdivides consensus traffic and synchronous traffic. The log example is as follows:

info|2020-04-24 12:58:41.173077|P2P|,g=2,P2P_CONSIn=80505,P2P_SYNCIn=19008,P2P_totalIn=99513,P2P_CONS_Out=211377,P2P_SYNC_Out=19008,P2P_total_Out=230385

Keyword description

	Log keywords
	Explanation

	g
	Group ID

	P2P_CONSIn
	Incoming traffic due to consensus module scheduling

	P2P_SYNCIn
	Incoming traffic due to synchronization module scheduling

	P2P_totalIn
	Group's total P2P inbound traffic

	P2P_CONS_Out
	Outgoing traffic due to consensus module scheduling

	P2P_SYNC_Out
	Outgoing traffic due to synchronization module scheduling

	P2P_total_Out
	Group's total P2P outgoing traffic

Group total traffic

In order to facilitate business parties to understand the overall bandwidth consumption of the blockchain system, the network traffic statistics module also counts the total outgoing and incoming traffic of each group. The keyword of the module is Total. The log example is as follows:

info|2020-04-24 12:58:41.173052|Total|,g=1,Total_In=74524,Total_Out=115434

Keyword description

	Log keywords
	Explanation

	g
	Group ID

	Total_In
	Group inbound traffic

	Total_Out
	Total outgoing traffic of the group

Gas consumption statistics log

The Gas consumption of a transaction measures the physical resources consumed by the transaction. In order to facilitate business parties to monitor the consumption of transaction resources, FISCO BCOS v2.4.0 counts the Gas consumption of each block and each transaction.

Gas consumption information for each block

The keyword of the statistical logging module for block Gas consumption is BlockGasUsed, and the statistical information includes: block height, group to which the block belongs, the number of transactions within the block, and gas consumption of the block.

info|2020-04-24 12:46:31.974147|BlockGasUsed|,g=2,txNum=193,gasUsed=3860579,blockNumber=1419,sealerIdx=2,blockHash=b10bdcc5da9c9cd5399ca5821bed9ae6f3fecbe1ddf8ec723b44e6fa30c4bd05,nodeID=0e23d6e237cfc5041d1754fa6682d71bef842b29ddfe3412b284aeac4b8b4794a51df409b667829750c2b4e91bdf95f51742e001e44dc9f97123a5002e49b8ca

Keyword description

	Log keywords
	Explanation

	g
	Group ID

	txNum
	Number of transactions within the block

	gasUsed
	The total gas consumption of all transactions in the block

	blockNumber
	Block height

	sealerIdx
	Generate the consensus node index of the block

	blockHash
	Block hash

	nodeID
	Node ID

Gas consumption information for each transaction

The keyword of the statistic logging module for the Gas consumption of each transaction is TxsGasUsed, which mainly counts the Gas consumption of each transaction. The log example is as follows:

info|2020-04-24 12:46:31.976080|TxsGasUsed|,g=2,txHash=a81ae1f60289cf7e8f6987b20c68ba9580a1c34d9252c5b4b9c097113309b9d7,gasUsed=20003

Keyword description

	Log keywords
	Explanation

	g
	Group ID

	txHash
	Transaction hash

	gasUsed
	Gas consumed by transaction

Configuration options

Note

Statistics log configuration options are located in config.ini, for details, please refer to here

 Disk encryption

Disk encryption

Background

In consortium chain structure, all agencies build a chain between each other, making data accessible to each agency.

When it comes to cases the require high data security, consortium members want to prevent other agencies to access the data on blockchain. Therefore, access control needs to be adopted on the data on consortium chain.

There are 2 aspects of data access control in consortium chain:

	access control on communication data

	access control on node storage data

FISCO BCOS manages access of communication data through node certificate and SSL verification. The following context introduces about its access control on node storage data, which is, disk encryption.

[image: ../../../_images/data_secure_background.png]

Concept

Disk encryption is conducted inside each agency. Each agency encrypts the disk of node data internally. When the disk is taken away from the agency and the node is started in external network, the disk will be unable to be decrypted and the node fail to be started. So data in the consortium chain will be well-protected.

Solution

[image: ../../../_images/diskencryption_framework.png]

Disk encryption is conducted and managed securely and independently by each agency. Disk of each node is encrypted. The access of encrypted data is managed by key manager, which is deployed inside agency and manages key to node disk data that is not open to outside network. When the node is started, it will acquire the key from key manager to access its own encrypted data.

The following objects are encrypted:

	node local database: leveldb

	node private key: node.key，gmnode.key (OSCCA)

Implementation

The implementation of disk encryption is realized by dataKey (hold by node itself) and superKey (managed by key manager).

Node

	node encrypts and decrypts its Encrypted Space by dataKey.

	node doesn’t store dataKey in local disk, but stores the encrypted dataKey-cipherDataKey.

	When node is started, it requests dataKey from key manager by cipherDataKey.

	DataKey is only in storage of node, when node is stoped, dataKey will be discarded.

Key Manager

Key manager holds superKey and responds to the access requests from all started nodes.

	Key Manager has to be on line in real time to respond to nodes’ start request.

	When node is started, it will send cipherDataKey to Key Manager to decrypt it by superKey. If succeed, key manager will return dataK to node.

	Key Manager can only be accessed within internal network.

[image: ../../../_images/diskencryption.png]

Process

Process of disk encryption includes node initial config and node safe operation.

Node initial config

Before started, dataKey of node needs to be configured

Important

When node is generated, before started, it has to be decided whether to adopt disk encryption. Once configured and started, node’s status cannot be transferred.

（1）Manager defines dataKey of node and sends to Key Manager to acquire cipherDataKey.

（2）Configure cipherDataKey to node config file

（3）Start node

Node safe operation

When node is started, it will acquire dataKey from key manager to access local data.

（1）Start node, read cipherDataKey in config file and send to Key Manager.

（2）Key Manager receives cipherDataKey and decrypts it using superKey, sends the decrypted dataKey back to node.

（3）Node gets dataKey to interact with local data (Encrypted Space). Data in Encrypted Space will be decrypted by dataKey, which is also needed for encryption when writing data to Encrypted Space.

How can it protect data?

When a node’s disk is accidentally brought to external network, the data will not be exposed.

（1）When node is started in external network, it will fail to connect with Key Manager and acquire dataKey, even though is has cipherDataKey.

（2）When node is not started, the local data can not be exposed in that there is no dataKey for decryption of Encrypted Space.

The detail operations of disk encryption are introduced here: Operations of disk encryption.

 P2P network

P2P network

Design objective

FISCO BCOS P2P model, with basic functions for efficient, commonly-used and safe internet communication, supports unicast, multicast and broadcast of blockchain messages, synchronizes nodes status and adapts multiple protocols.

P2P main functions

	Blockchain node identification

The nodes on blockchain are uniquely identified by node ID, which is used for addressing nodes.

	Network connection management

It maintains TCP persistent connection between nodes, automatically disconnect and reconnect when connection exceptions occur.

	Messaging

Messages can be unicasted, multi-casted and broadcasted among nodes on blockchain.

	Status syncing

Node status can be synchronized on blockchain.

Blockchain node ID

Node ID is generated by the public key of ECC algorithm. Each node owns one and unique ECC key pair, as each node is identified by one and only node ID.

Usually, there files are needed when adding a node to blockchain network:

	node.key key of node in ECC format

	node.crt node certificate issued by CA

	ca.crt CA certificate provided by CA

Besides a unique node ID, nodes can follow Topic for addressing.

Node addressing:

	Addressing by node ID

To locate a node by its node ID.

	Addressing by Topic

To locate a group of nodes that follows some Topic.

Network Connection Management

Blockchain nodes will automatically start and maintain TCP permanent connection, or reconnect when there is exception in system and network.

CA certificate will be used to verify nodes during connection.

Connection process

 sequenceDiagram
 participant Node A
 participant Node B

 Node A->>Node A: load key and certificate
 Node B->>Node B: load key and certificate
 Node A->>Node B: start connection
 Node B->>Node A: connected
 Node B->Node A: start SSL shaking
 Node A->>Node A: acquire public key from certificate as node ID
 Node B->>Node B: acquire public key from certificate as node ID
 Node B->Node A: shaking succeeded, start SSL connection

Messaging

Messaging among nodes supports unicast, multicast and broadcast.

	Unicast, one node sends messages to another node, addressing through node ID.

	Multicast, one node sends messages to a group of nodes, addressing through Topic.

	Broadcast, one node sends messages to all nodes.

Unicast process

 sequenceDiagram
 participant Node A
 participant Node B

 Node A->>Node A: filter nodes by node ID
 Node A->>Node B: send message
 Node B->>Node A: return message

Multicast process

 sequenceDiagram
 participant Node A
 participant Node B
 participant Node C
 participant Node D

 Node A->>Node A: select Node B and C from Topic 1
 Node A->>Node B: send message
 Node A->>Node C: send message
 Node B->>Node B: select Node C and D from Topic 2
 Node B->>Node C: send message
 Node B->>Node D: send message
 Node C->>Node C: select Node D from Topic 3
 Node C->>Node D: send message

Broadcast process

 sequenceDiagram
 participant Node A
 participant Node B
 participant Node C
 participant Node D

 Node A->>Node A: iterate over each node ID
 Node A->>Node B: send message
 Node A->>Node C: send message
 Node A->>Node D: send message
 Node B->>Node B: iterate over each node ID
 Node B->>Node C: send message
 Node B->>Node D: send message
 Node C->>Node C: iterate over each node ID
 Node C->>Node D: send message

Status syncing

Every node maintains its own status and broadcasts the Seq regularly to synchronize all nodes.

 sequenceDiagram
 participant Node A
 participant Node B

 Node A->Node B: broadcast seq
 Node A->>Node A: tell whether the seq of Node B has changed
 Node A->>Node B: seq changed, request status checking
 Node B->>Node A: return node status
 Node A->>Node A: update status and seq of Node B

 Transaction parallel

Transaction parallel

1 Terms definition

1.1 DAG

An acyclic directed graph is called Directed Acyclic Graph, or DAG. In a batch of transactions, it can recognize the mutually exclusive resource to be occupied in each transaction, and make a transaction dependency DAG according to the sequence of transaction in block and the occupation relationship of mutually exclusive resource. As the picture shows below, transaction with 0 in-degree (no dependent pre-order task) can be executed in parallel. By topological sort based on the sequence of the initial transaction list in the left graphic, you can get transaction DAG in the right graphic.

[image: ../../../_images/DAG.png]

2 Model structure

[image: ../../../_images/architecture2.png]
Main process includes:

	user directly and indirectly initiates transaction through SDK, transaction can be either executed in parallel or not;

	transaction enters txPool and waits to be sealed;

	transaction gets sealed to block by Sealer and sent to BlockVerifier for verification after consensus;

	BlockVerifier generates transaction DAG according to the transaction list in block;

	BlockVerifier builds the execution context and executes transaction DAG;

	block is on chain after verified.

3 Crucial process

3.1 Building of transaction DAG

3.1.1 DAG data structure

The DAG data structure in the solution is:
[image: ../../../_images/TxDAG.png]
Note:

	Vertex

	inDegree stores the current in-degree of Vertex;

	outEdge stores outedge information of the Vertex, containing ID list of all out-edge connected Vertexs.

	DAG：

	vtxs stores the list of all nodes in DAG;

	topLevel is a concurrent queue storing node ID with 0 in-degree, supports concurrent access of multiple threads;

	totalVtxs：total vertexs

	totalConsume：total executed vertexs;

	void init(uint32_t _maxSize)：initialize the maximum vertex to get maxSize DAG;

	void addEdge(ID from, ID to)：set a directed edge between vertex from and to;

	void generate()：build a DAG structure by the existed edges and vertexs;

	ID waitPop(bool needWait)：wait to extract a 0 in-degree node from topLevel;

	void clear()：clear all nodes and edges information in DAG.

	TxDAG:

	dag：DAG examples

	exeCnt：executed transactions count;

	totalParaTxs：total parallel transactions;

	txs：parallel transactions list;

	bool hasFinished()：return true if the DAG is executed, return false if not;

	void executeUnit()：take out a transaction without upper level dependency and execute;

3.1.2 Transaction DAG building process

Process:

[image: ../../../_images/dag_construction.png]

	take out all transaction from sealed blocks；

	initialize a DAG example with transactions amount as the maximum vertex amount;

	read all transactions in sequence. If a transaction can be executed in parallel, analyze the collision domain and check if it collides to former transactions, if does, build dependent edge between transactions; if a transaction cannot be executed in parallel, it should be executed after all pre-order transactions are executed, and so there will be a dependent edge between it and the pre-order transactions.

3.2 DAG execution process

Process:

[image: ../../../_images/execution.png]

	Main thread will initialize a same size thread group according to hardware coreness. If it fails to get hardware coreness, then other threads will not be created;

	When DAG is still in execution, thread waits in loop to pop out 0 out-in degree transaction。 If it works, the transaction will be executed and the in-degree of its later dependent task minus 1. If transaction in-degree is minus to 0, it will be added to topLevel; if fails, then it means that DAG has finished execution and thread has been logged out.

 CA blacklist and whitelist

CA blacklist and whitelist

This section contains the brief introduction of blacklist and whitelist, for the implementation please check CA blacklist and whitelist operation tutorial.

Terms definition

CA blacklist

	CA blacklist is also known as Certificate Blacklist, or CBL. CA blacklist verifies and denies connection requests from each node based on node ID in [certificate_blacklist] of config.ini configuration file.

CA whitelist

	CA whitelist is also known as Certificate Whitelist, or CAL. CA whitelist verifies and denies connection requests from each node which is not belong to [certificate_whitelist] of config.ini configuration file.

Config types of CA blacklist and whitelist

	according to effective area (network config/ledger config), it belongs to network config and affects the node connection in the overall network;

	according to modifiability (modifiable config/fixed config), it belongs to modifiable config, modification valid after restart;

	according to storage location (local storage/store on chain), it belongs to local storage, content recorded in local instead of on chain.

Model structure

The below diagram shows the model and relations of CA blacklist. A->B informs that model B depends on the data of model A, and it is later in initialization than model A. The framework of whitelist is the same.

[image: ../../../_images/architecture3.png]

Model structure
Core processSSL two-way certificate is implemented in the bottom level of FISCO BCOS. During handshake, nodes acquire each other’s NodeID from its certificate and verify if it is among the CA blacklist and whitelist. If it is rejected by the strategy of blacklist and whitelist, close the connect and resume the later process.

Reject strategy

	Blacklist: Reject all connections which NodeID belong to blacklist.

	Whitelist: Reject all connections which NodeID is not belong to whitelist. If whitelist is empty, accept all connections.

Priority of blacklist and whitelist

The priority of blacklist is higher than whitelist. For example, the whitelist is A, B, C and blacklist is A. The connection coming from A will be rejected.

Effective area

	CA blacklist and whitelist has evident influence in P2P node connection in network level and AMOP function by invalidation;

	CA blacklist has potential influence in consensus and syncing in ledger level by interfering message/data transfer.

Config format

CA blacklist

config.ini node config adds [certificate_blacklist] route ([certificate_blacklist] is optional). CA blacklist contains node ID list. node.X indicates node ID of rejected nodes. Config format of CA blacklist is as below:

[certificate_blacklist]
 crl.0=4d9752efbb1de1253d1d463a934d34230398e787b3112805728525ed5b9d2ba29e4ad92c6fcde5156ede8baa5aca372a209f94dc8f283c8a4fa63e3787c338a4
 crl.1=af57c506be9ae60df8a4a16823fa948a68550a9b6a5624df44afcd3f75ce3afc6bb1416bcb7018e1a22c5ecbd016a80ffa57b4a73adc1aeaff4508666c9b633a

CA whitelist

Same as blacklist. Add cal.x= below [certificate_whitelist].

[certificate_whitelist]
 cal.0=4d9752efbb1de1253d1d463a934d34230398e787b3112805728525ed5b9d2ba29e4ad92c6fcde5156ede8baa5aca372a209f94dc8f283c8a4fa63e3787c338a4
 cal.1=af57c506be9ae60df8a4a16823fa948a68550a9b6a5624df44afcd3f75ce3afc6bb1416bcb7018e1a22c5ecbd016a80ffa57b4a73adc1aeaff4508666c9b633a

 Role based access control

Role based access control

 Security control

Security control

To ensure safe communication and access of data among nodes, FISCO BCOS adopts mechanisms of node access, CA blacklist and permission control for security control in network and storage level.

Network security control

	SSL connection of nodes, ensuring secrecy of communication

	Network access mechanism, ensuring system security by removing malicious nodes from consensus node list or group

	Group whitelist mechanism, ensuring independency of communication data among groups by making each group receives the messages of the counter group only

	CA blacklist mechanism, disconnecting malicious nodes in time

	Distributed storage permission control mechanism controlling the permissions of exterior accounts for contract deployment and CRUD operations on user table

Storage security control

The permission control mechanism based on distributed storage controls access in a flexible and delicate way by implementing the restriction on the storage access for exterior accounts (tx.origin), which includes contract deployment, table creation and writing.

	Node access management

	CA blacklist and whitelist

	Role based access control

	Permission control

 Node access management

